Xem Nhiều 6/2022 # Phân Tích Và Đọc Kết Quả Hồi Quy Đa Biến Trong Spss # Top Trend

Xem 14,850

Cập nhật thông tin chi tiết về Phân Tích Và Đọc Kết Quả Hồi Quy Đa Biến Trong Spss mới nhất ngày 27/06/2022 trên website Sansangdethanhcong.com. Hy vọng nội dung bài viết sẽ đáp ứng được nhu cầu của bạn, chúng tôi sẽ thường xuyên cập nhật mới nội dung để bạn nhận được thông tin nhanh chóng và chính xác nhất. Cho đến thời điểm hiện tại, bài viết này đã đạt được 14,850 lượt xem.

--- Bài mới hơn ---

  • Phương Pháp Rice Cho Thương Tích Là Gì?
  • Ý Nghĩa Của Các Từ Viết Tắt: Dris, Rda, Ear, Ai, Ul, %dv, Rdi Là Gì?
  • Rf Là Gì? Các Ứng Dụng Của Sóng Rf Trong Thẩm Mỹ Liệu Có Hại Không
  • Bari Sunfat Là Gì? Tính Chất Đặc Trưng, Cách Điều Chế & Công Dụng
  • Phân Tích Swot Là Gì Và Ứng Dụng Swot Như Thế Nào?
  • Adjusted R Square hay còn gọi là R bình phương hiệu chỉnh, nó phản ánh mức độ ảnh hưởng của các biến độc lập lên biến phụ thuộc. Cụ thể trong trường hợp này, 6 biến độc lập đưa vào ảnh hưởng 67.2% sự thay đổi của biến phụ thuộc, còn lại 32.8% là do các biến ngoài mô hình và sai số ngẫu nhiên .

    Xây dựng xong một mô hình hồi quy đa biến, vấn đề quan tâm đầu tiên của bạn phải là xem xét độ phù hợp của mô hình đối với tập dữ liệu qua giá trị Adjusted R Square (hoặc R Square) như đã trình bày ở mục 1. Nhưng cần nhớ rằng, sự phù hợp này mới chỉ thể hiện giữa mô hình bạn xây dựng được với tập dữ liệu là MẪU NGHIÊN CỨU.

    Tổng thể rất lớn, chúng ta không thể khảo sát hết toàn bộ, nên thường trong nghiên cứu, chúng ta chỉ chọn ra một lượng mẫu giới hạn để tiến hành điều tra, từ đó suy ra tính chất chung của tổng thể. Mục đích của kiểm định F trong bảng ANOVA chính là để kiểm tra xem mô hình hồi quy tuyến tính này có suy rộng và áp dụng được cho tổng thể hay không.

    Cụ thể trong trường hợp này, giá trị sig của kiểm định F là 0.000 < 0.05. Như vậy, mô hình hồi quy tuyến tính xây dựng được phù hợp với tổng thể .

    3. Bảng Coefficients

    Đầu tiên là giá trị Sig kiểm định t từng biến độc lập, sig nhỏ hơn hoặc bằng 0.05 có nghĩa là biến đó có ý nghĩa trong mô hình, ngược lại sig lớn hơn 0.05, biến độc lập đó cần được loại bỏ.

    Tiếp theo là hệ số hồi quy chuẩn hóa Beta, trong tất cả các hệ số hồi quy, biến độc lập nào có Beta lớn nhất thì biến đó ảnh hưởng nhiều nhất đến sự thay đổi của biến phụ thuộc. Do đó khi đề xuất giải pháp, các bạn nên chú trọng nhiều vào các nhân tố có Beta lớn. Nếu hệ số Beta âm nghĩa là biến đó tác động nghịch, hệ số Beta dương, biến đó tác động thuận. Khi so sánh thứ tự độ lớn, chúng ta xét giá trị tuyệt đối của hệ số Beta.

    Cuối cùng là VIF, giá trị này dùng để kiểm tra hiện tượng đa cộng tuyến. Theo lý thuyết nhiều tài liệu viết, VIF < 10 sẽ không có hiện tượng đa cộng tuyến. Tuy nhiên trên thực tế với các đề tài nghiên cứu có mô hình + bảng câu hỏi sử dụng thang đo Likert thì VIF < 2 sẽ không có đa cộng tuyến, trường hợp hệ số này lớn hơn hoặc bằng 2, khả năng cao đang có sự đa cộng tuyến giữa các biến độc lập. Để hiểu rõ hơn về nguyên nhân, dấu hiệu nhận biết và giải pháp khắc phục đa cộng tuyến, các bạn có thể xem qua bài viết: Đa cộng tuyến: Nguyên nhân, dấu hiệu nhận biết và cách khắc phục.

    Với dữ liệu mình đang chạy, như các bạn thấy sig hệ số hồi quy của các biến độc lập đều nhỏ hơn hoặc bằng 0.05, do đó các biến độc lập này đều có ý nghĩa giải thích cho biến phụ thuộc, không biến nào bị loại bỏ. Hệ số VIF nhỏ hơn 2 do vậy không có đa cộng tuyến xảy ra .

    Riêng cột Tolerance, các bạn sẽ thấy một số bài nghiên cứu, tài liệu sử dụng hệ số này để kiểm tra đa cộng tuyến. Nhưng ở đây mình không dùng, bởi vì hệ số này là nghịch đảo của VIF, nên các bạn có thể sử dụng 1 trong 2, cái nào cũng được, thường mọi người hay dùng VIF hơn.

    Như vậy phương trình hồi quy chuẩn hóa sẽ là:

    F_YD = 0.317*F_NT + 0.414*F_NTi + 0.351 *F_KSD

    + 0.251*F_DM + 0.365*F_KST + 0.242*F_GT

    4. Biểu đồ tần số phần dư chuẩn hóa Histogram

    Từ biểu đồ ta thấy được, một đường cong phân phối chuẩn được đặt chồng lên biểu đồ tần số. Đường cong này có dạng hình chuông, phù hợp với dạng đồ thị của phân phối chuẩn. Giá trị trung bình Mean gần bằng 0, độ lệch chuẩn là 0.976 gần bằng 1, như vậy có thể nói, phân phối phần dư xấp xỉ chuẩn. Do đó, có thể kết luận rằng: Giả thiết phân phối chuẩn của phần dư không bị vi phạm.

    5. Biểu đồ phần dư chuẩn hóa Normal P-P Plot

    Như mình đã đề cập ở mục 4, ngoài cách kiểm tra bằng biểu đồ Histogram, thì P-P Plot cũng là một dạng biểu đồ được sử dụng phổ biến giúp nhận diện sự vi phạm giả định phần dư chuẩn hóa.

    Với P-P Plot (hoặc bạn có thể dùng Q-Q Plot, 2 đồ thị này không khác nhau nhiều), các điểm phân vị trong phân phối của phần dư sẽ tập trung thành một đường chéo nếu phần dư có phân phối chuẩn. Hay nói một cách đơn giản, dễ hiểu, các bạn nhìn vào đồ thị này, các chấm tròn tập trung thành dạng một đường chéo thì sẽ không vi phạm giả định hồi quy về phân phối chuẩn phần dư.

    Cụ thể với dữ liệu mình đang sử dụng, các điểm phân vị trong phân phối của phần dư tập trung thành 1 đường chéo, như vậy, giả định phân phối chuẩn của phần dư không bị vi phạm .

    6. Biểu đồ Scatter Plot kiểm tra giả định liên hệ tuyến tính

    Biểu đồ phân tán Scatter Plot giữa các phần dư chuẩn hóa và giá trị dự đoán chuẩn hóa giúp chúng ta dò tìm xem, dữ liệu hiện tại có vi phạm giả định liên hệ tuyến tính hay không. Trong bài viết này, mình biểu diễn giá trị phần dư chuẩn hóa (Standardized Residual) ở trục hoànhgiá trị dự đoán chuẩn hóa (Predicted Value) ở trục tung. Các bạn phải thực sự chú ý chỗ này, bởi vì có nhiều tài liệu, sách biểu diễn ngược lại với mình nên khi nhận xét sẽ có vài điểm thay đổi giữa mỗi tác giả khác nhau.

    Kết quả đồ thị xuất ra, các điểm phân bố của phần dư nếu có các dạng: đồ thị Parabol, đồ thị Cubic,.. hay các dạng đồ thị khác không phải đường thẳng thì dữ liệu của bạn đã vi phạm giả định liên hệ tuyến tính. Nếu giả định quan hệ tuyến tính được thỏa mãn thì phần dư sẽ dao dộng xung quanh đường tung độ 0 và không phân tán đi quá xa.

    Cụ thể với tập dữ liệu mình đang sử dụng, phần dư chuẩn hóa phân bổ tập trung xunh quanh đường tung độ 0, do vậy giả định quan hệ tuyến tính không bị vi phạm .

    Từ khóa: hồi quy trong spss, hồi quy đa biến spss, phân tích hồi quy spss, hồi quy tuyến tính bội spss, đọc kết quả hồi quy spss, cách chạy hồi quy bội spss

    --- Bài cũ hơn ---

  • Phân Tích Hồi Quy Là Gì?
  • Hướng Dẫn Hồi Quy Gmm Toàn Tập
  • Phương Pháp Quản Lí Giáo Dục
  • Phương Pháp Lấy Mẫu Trong Luận Văn Cao Học Ueh Qtkd Hướng Nghề Nghiệp
  • Phương Pháp Kinh Doanh Là Gì? Tại Sao Cần Phải Hiểu Phương Pháp Kinh Doanh
  • Bạn đang xem bài viết Phân Tích Và Đọc Kết Quả Hồi Quy Đa Biến Trong Spss trên website Sansangdethanhcong.com. Hy vọng những thông tin mà chúng tôi đã chia sẻ là hữu ích với bạn. Nếu nội dung hay, ý nghĩa bạn hãy chia sẻ với bạn bè của mình và luôn theo dõi, ủng hộ chúng tôi để cập nhật những thông tin mới nhất. Chúc bạn một ngày tốt lành!

  • Web hay
  • Links hay
  • Push
  • Chủ đề top 10
  • Chủ đề top 20
  • Chủ đề top 30
  • Chủ đề top 40
  • Chủ đề top 50
  • Chủ đề top 60
  • Chủ đề top 70
  • Chủ đề top 80
  • Chủ đề top 90
  • Chủ đề top 100
  • Bài viết top 10
  • Bài viết top 20
  • Bài viết top 30
  • Bài viết top 40
  • Bài viết top 50
  • Bài viết top 60
  • Bài viết top 70
  • Bài viết top 80
  • Bài viết top 90
  • Bài viết top 100
  • CẦM ĐỒ TẠI F88
    15 PHÚT DUYỆT
    NHẬN TIỀN NGAY

    VAY TIỀN NHANH
    LÊN ĐẾN 10 TRIỆU
    CHỈ CẦN CMND

    ×