Top 4 # Phan Biet How Much How Many Xem Nhiều Nhất, Mới Nhất 3/2023 # Top Trend | Sansangdethanhcong.com

Cách Dùng, Cách Phân Biệt Much, Many, How Much, How Many Đầy Đủ Nhất

1. Cách dùng MUCH và MANY:

Trong tiếng Anh, MUCH và MANY có cách dùng khác biệt rõ ràng:

* Many (nhiều): được dùng trước danh từ đếm được.

* Much (nhiều): được dùng trước danh từ không đếm được.Ví dụ: He has many friends. ( Anh ấy có nhiều người bạn )We don’t have much money. ( Chúng tôi không có nhiều tiền )

2. Phân biệt MUCH và MANY:

* MANY thường được thay thế bằng: lot/ lots of (+ danh từ) hoặc bằng a lot /lot (+ đại từ)

* MUCH thường được thay bằng a great/ good deal of (+ danh từ) hoặc a great/ good deal (+đại từ)

Ví dụ: He spent a lot/ lots of money on his car.

CẦN CHỨNG CHỈ TOEIC GẤP? THAM KHẢO: KHÓA HỌC TOEIC CẤP TỐC CHO NGƯỜI MẤT GỐC

Xem them các tài liệu khác:

II. Cách dùng How much và How many:

1. Cách dùng How much:

“How much” được dùng khi bạn muốn hỏi về số lượng của danh từ không đếm được hoặc hỏi về giá cả.

How much dùng cho câu hỏi về số lượng của danh từ không đếm được Cấu trúc câu hỏi:

How much + Danh từ không đếm được + is there? (Có bao nhiêu….?)

Hoặc: How much + Danh từ không đếm được + do/does + S + have ?

Ví dụ:

How much beer is left? (Có bao nhiêu bia còn lại?)

How much juice do you drink every day ? (Bạn uống bao nhiêu nước hoa quả mỗi ngày?)

Cấu trúc câu trả lời:

* There is… * Some…

How much còn được dùng khi hỏi về giá của đối tượng:

Cấu trúc câu hỏi: How much + do/does + S + cost ? ( Giá bao nhiêu…?)

Ví dụ: How much does the pen cost? (Cái bút giá bao nhiêu?)

TÌM HIỂU NGAY: KHÓA HỌC TOEIC 4 KỸ NĂNG NGHE – NÓI – ĐỌC – VIẾT

2. Cách dùng How many:

How many được dùng khi bạn muốn hỏi về số lượng của thứ gì đó, áp dụng cho danh từ đếm được.

* Câu hỏi How many:

Cấu trúc: How many + Danh từ số nhiều + are there? (Có bao nhiêu…?)

How many + Danh từ số nhiều + do/does + S + have ?

Ví dụ: How many people are there in your team? (Có bao nhiêu người trong nhóm của bạn?)

* Câu trả lời How many:– Nếu có 1, trả lời: There is one.– Nếu có nhiều, trả lời: There are + số lượng.

Ví dụ: – How many tables are there in the kitchen room? (Có bao nhiêu cái bàn trong phòng bếp?)There is one. ( Chỉ có 1 cái )– How many stools are there in the kitchen room? (Có bao nhiêu cái ghế đẩu trong phòng bếp?)There are six. ( Có 6 cái ).

Bài tập áp dụng:

Điền MANY/MUCH/HOW MUCH/HOW MANY vào chỗ trống:

Đáp án:

MUCH và MANY hay HOW MUCH/ HOW MANY là những ngữ pháp thường gặp trong TOEIC, với bài viết hôm nay, Athena tin chắc rằng các bạn đã sẵn sàng để ”ẵm trọn” điểm cho phần bài tập này rồi phải không nào?

KHÔNG CÓ THỜI GIAN? XEM NGAY: KHÓA HỌC TOEIC ONLINE CỰC HIỆU QUẢ!

Tham khảo các bài viết về ngữ pháp khác tại bài viết: Tổng quan ngữ pháp toeic

Khác Biệt Giữa How Much Và How Many

✔ How many dùng trước danh từ đếm được, số nhiều.

How many + Plural noun (danh từ số nhiều)+ are there? (Có bao nhiêu..-noun-..?)

Hoặc: – How many + Plural noun (danh từ số nhiều) + do/does + S + have ?

How many people are there in your family? (Có bao nhiêu người trong gia đình bạn?) How many students are there in your class? (Có bao nhiêu học sinh trong lớp bạn?)

✔ Để trả lời How many, ta dùng: – Nếu có 1, ta trả lời: There is one – Nếu có nhiều, ta trả lời: There are + số lượng

– How many tables are there in the living room? (Có bao nhiêu cái bàn trong phòng khách?) – There is one.

– How many stools are there in the living room? (Có bao nhiêu cái ghế đẩu trong phòng khách?) – There are four . (Có 4 cái)

– How many students are there in your class? (Có bao nhiêu sinh viên trong lớp của bạn?) – There are twenty . (Có 20 sinh viên)

✔ How much dùng cho câu hỏi về danh từ ở dạng số ít/ không đếm được.

How much +Uncount noun (danh từ không đếm được) + is there? (Có bao nhiêu..-noun-..?)

Hoặc: – How much + Uncount noun (danh từ không đếm được) + do/does + S + have ?

How much juice is left? (bao nhiêu nước trái cây còn lại?)

How much water do you drink every day ? (Bạn uống bao nhiêu nước mỗi ngày)

✔ How much còn được dùng khi hỏi về . How much does the book cost? (quyển sách giá bao nhiêu?)

✔ Để trả lời How much, ta dùng: – There is … How much butter is there in the fridge? (Có bao nhiêu bơ trong tủ lạnh?) – some. – ( một ít.)

✔ – How many books do you have? – (I have) ten. (A.E.: theo Mỹ) – How many books have you got ? – (I’ve got) ten. (B.E.: theo Anh) (Bạn có bao nhiêu sách? – Mười.)

– How much sugar do you have? – (I have) a little. (A.E.) – How much sugar have you got? – (I’ve got) little. (B.E.) (Bạn có bao nhiêu đường? – Một chút thôi.)

TÓM LẠI: – How many + danh từ đếm được – How much + danh từ không đếm được

How About Going To Cinema? Sự Khác Biệt Nhỏ Giữa How About?

Trong đời sống hàng này, nếu giao tiếp bằng tiếng Anh bạn sẽ rất thường xuyên gặp những đoạn hội thoại kiểu như thế này….

A: “How have you been?” (Dạo này thế nào?)

B: “Good – a little busy with school. you?” (Ờ, ổn, học hành hơi bận tí. Cậu thế nào?)

A: “Where do you work?” (Cậu làm ở đâu?)

B:”At the hotel. you?” (Tớ làm ở khách sạn. Cậu thì sao?)

Trong những tình huống hội thoại như trên, What about you? và How about you? tuyệt đối giống nhau khi được dùng để hỏi lại một người khác (người trước đó đã hỏi bạn, bạn đã trả lời, và hỏi lại họ) nhằm tránh phải lặp lại câu hỏi cũ.

Tuy nhiên, giữa What about ? và How about? Vẫn có một sự khác biệt nhỏ.

“I’ve got the day off from work tomorrow. What should we do?”

(Mai em được nghỉ rồi. Bọn mình làm gì giờ?)

“How about spending the day in the city?”

“Nah. I don’t really feel like traveling.”

(Ko, em không thích đi lại)

“How about we clean the house?”

(Mơ. Em muốn gì đó vui vui)

“OK. How about doing some shopping and then seeing a movie?”

(OK. Thế đi mua sắm và xem phim nhá?)

“Hmm… that sounds good!”

(Uh,có vẻ được đấy)

Trong đoạn hội thoại trên, “How about…?” được sử dụng để gợi ý một loại hành động. Được sử dụng tương tự như “

“How about…” được theo sau bởi V-ing hoặc mệnh đề.

“What about?” được sử dụng để đề cập tới một đối tượng, hoặc một vấn đề có khả năng xảy ra.

Ví dụ:

“Let’s spend the weekend in the city!”

(Nhưng giờ học đàn guitar của con thứ Bảy thì sao)

“That’s no problem, just talk with the teacher and reschedule it.”

(Không sao, chỉ cần nói với cô giáo và xếp lại lịch là được)

“And what about the English test on Monday? I haven’t studied yet.”

(Còn bài kiểm tra Anh của con vào thứ Hai? Con chưa học gì cả.)

“You can study on Sunday night when we get back.”

(Con có thể học vào tối chủ nhật khi chúng ta quay về)

Trong đoạn hội thoại trên, “What about…” được sử dụng để diễn tả mặt tiêu cực hay một vấn đề có thể nảy sinh theo kế hoạch. Sau “What about” thường là một danh từ.

Bản quyền thuộc về chúng tôi

How To Load Test Mongodb With Jmeter

As Big Data and real-time web apps keep getting bigger, NoSQL databases are more popular than ever for data storage. This is especially true for NoSQL’s most popular database – MongoDB.

Let’s take a step back for a moment…

When performance testing you usually need to check the entire application to measure the end-user experience. But it’s sometimes easier to test each database component separately if you want to check the response times for certain queries, the efficiency of horizontal scaling, replications, failovers and resilience, and to ensure the database is properly tuned you won’t hit a bottleneck or be denied service.

In today’s post, I’m going to guide you through MongoDB load testing with Apache JMeter, highlight frequently faced problems along with their workarounds, and explain and demonstrate some of MongoDB’s most common tasks.

JMeter first introduced support for MongoDB support in version 2.10, which was released in October 2013. Now we’re already on JMeter 2.13…here’s how MongoDB is being implemented:

MongoDB Source Config – a configuration element which creates a MongoDB connection using specified settings.

MongoDB Script – a sampler capable of sending requests to MongoDB. It assumes and requires the presence and correct configuration of MongoDB Source Config

Let’s take a look at how these test elements can be used for MongoDB testing. For today’s demo, I’ll be using the chúng tôi file – which can be found here: http://media.mongodb.org/zips.json. If you want to copy any of the examples below, just download the chúng tôi file to your computer and import it with this command:

mongoimport –db test –collection zips –file /path/to/zips.json

A quick explanation of each term…

mongoimport: a binary file located in the /bin folder of your MongoDB installation

“test”: MongoDB’s database, a container for “collections”

“zips”: MongoDB collection name

{ “_id” : “43747”, “city” : “JERUSALEM”, “loc” : [ -81.092088, 39.848831 ], “pop” : 2037, “state” : “OH” }

Want to visualize it more easily? Use tools like MongoVUE or Robomongo.

So let’s get started.

In order to execute MongoDB queries we need to:

You can leave other values as they are – the defaults are good to go. I’ll use the IP address of my MongoDB test server, and give “blazemeter” as the Mongo Source name.

Add the MongoDB Script, providing the:

Mongo Source name (in this case, “blazemeter”)

Database name (in this case, “test”)

Script. For this step, I’ll use the count of the elements in the “zips” collection, which is:

db.getCollection(“zips”).count()

View the Results Tree Listener to visualize the results

Let’s run the test and see how it goes:

As you can see, the MongoDB Script sampler response data is 29353.0. This is the actual count of all the documents in the “zips” collection of the “test” database.

IMPORTANT: There should not be any blank lines in the MongoDB Script Sampler. If you have a blank line after your MongoDB statement, the statement will still be chúng tôi you’ll only get the word “ok” in the response. If you’re getting “ok” double check that there aren’t any trailing blank lines in your script.

Make sure that line number “2” is NOT displayed.

Now let’s enter information on a city into the collection. You can re-use the same test plan but the “Script” area of the MongoDB Script sampler needs to be updated to something like this:

db.getCollection(‘zips’).insert({“city” : “BABYLON”, “loc” : [ 32.211100, 44.251500 ], “pop” : 300000, “state” : “IS” })

When you run the updated script in JMeter, you should be able to see the request details in the “Request” tab of the ‘View Results Tree Listener’

…and in the “Response Data” tab, you’ll be able to see the results.

If you change the MongoDB Script query back to db.getCollection(“zips”).count(), you should be able to get the updated documents count (incremented by 1). In my case, the count is: 29354.0

db.getCollection(‘zips’).findOne({“city”:”BABYLON”})

If you look into the Response Data tab of the View Results Tree Listener, you’ll be able to see the document that was inserted earlier.

It’s worth noting that I switched to the “JSON” tab for more user-friendly view.

Now, let’s measure the time it takes with a MongoDB Script sampler to get all the documents where the city is “NEW YORK”. This is how the MongoDB query should look:

db.getCollection(“zips”).find({“city” : “NEW YORK”})

When executed in Robomongo, this query returns 40 results within 0.103 seconds

Let’s try doing the same in JMeter. Enter the same request into the “Script” section of the MongoDB Script sampler:

Now let’s look at the “Response Data” tab:

It looks like that the sampler returns information on the health of the MongoDB server – rather than a list of documents which contain “city = NEW YORK” (as we wanted).

But Why?

When you look at the EvalResultsHandler class source, you can see that they can only be supported when cast to JSON. As the “NEW YORK” query returns more than one (actually 40!) documents, it needs to somehow be converted to JSON so the sampler can return it properly.

Fortunately there is a solution! You just need to append the “.toArray()” method to the end of the MongoDB query, like this:

db.getCollection(“zips”).find({“city” : “NEW YORK”}).toArray()

This will convert the response into something that can be cast to the JSON Array. This means the response will be displayed and used to extract the “interesting” bits – such as applying assertions, etc.

Now let’s see how to load test MongoDB with the help of JMeter. Surprisingly, it’s NOT RECOMMENDED to use the MongoDB Script Sampler for MongoDB load testing. The MongoDB Script uses the db.eval() method “under the hood” for executing queries and this is being phased out (as from the current version – MongoDB 3.0). Here are some reasons why:

Performance: the db.eval() method takes the global lock by default. This means that all read and write operations are blocked while your script is being evaluated

Compatibility: the db.eval() method won’t work on shared collections

Security: the db.eval() method requires too much privileges and your account might not have enough permissions to invoke it

Robustness: your scripts relying on the db.eval() method might stop working on next MongoDB release – when the method will be completely removed.

So here’s where it’s OK to use the MongoDB Script Sample:

For functional testing with one thread

If you need to change a huge amount of data and want to avoid overhead caused by passing gigabytes of data back and forth over the network.

However, if you need to create immense load, you should look at other options.

If you’re load testing MongoDB, it’s recommended to call the MongoDB Java Driver methods from the JSR223 Sampler, using “groovy” as a language.

Why JSR223 and groovy?

It’s the only scripting approach which provides performance comparable with native Java code. See Beanshell vs JSR223 vs Java JMeter Scripting: The Performance-Off You’ve Been Waiting For! for details on installing the groovy engine into JMeter – along with limitations and best practices.

If you’re not familiar with groovy – it’s worth knowing that it’s 100% compatible with Java, so a well-formed Java code will work like a charm!

So make sure you have:

a groovy-all-*.jar file in /lib folder of your JMeter installation

restarted JMeter to pick up the Groovy library

a MongoDB Source Config pointing to your MongoDB installation with the Source Name “blazemeter”

added the JSR223 Sampler

chosen “groovy” from “Language” drop down

And we’re good to go on to the next step.

First of all, we need to learn how to do the following:

Initialize the MongoDB connection based on the data source name

Get a count of documents in the collection

Insert a document

Assure that the count is incremented by 1

Find one document

Find multiple documents

Here’s how you access MongoDB from a groovy code:

import com.mongodb.DB; import org.apache.jmeter.protocol.mongodb.config.MongoDBHolder;

DB db = MongoDBHolder.getDBFromSource(“blazemeter”, “test”);

Where

If you need to provide credentials to access MongoDB, just add them as parameters:

DB db = MongoDBHolder.getDBFromSource(“blazemeter”, “test”, “username”, “password”);

So now you have an instance of the chúng tôi class, which is accessible as db. If you want to see all the available methods and fields, take a look at its JavaDOC. Let’s try to invoke MongoDB.getStats() – which is the equivalent of the dbstats MongoDB command. We’re interested in the string representation, so this is how the final line will look:

String result = db.getStats().toString();

Now we somehow need to return the resulting string. The JSR223 Sampler provides some predefined variables like ctx, vars, props, SampleResult,log, etc. These are all shorthands for relevant JMeter API classes instances, such as:

We’re particularly interested in the SampleResult as it gives control over the JSR223 Sampler and returns values like the Response Code, Response Message, and Response Body. To set the sampler response body, you’ll need to use the setResponseData()

So, here’s how it looks when we put everything together:

import com.mongodb.DB; import org.apache.jmeter.protocol.mongodb.config.MongoDBHolder;

DB db = MongoDBHolder.getDBFromSource(“blazemeter”, “test”); String result = db.getStats().toString() SampleResult.setResponseData(result.getBytes());

Here’s what you need to do:

This is what the full code will look like:

import com.mongodb.DB; import org.apache.jmeter.protocol.mongodb.config.MongoDBHolder; import com.mongodb.DBCollection;

DB db = MongoDBHolder.getDBFromSource(“blazemeter”, “test”); DBCollection collection = db.getCollection(“zips”);

Try to run the code yourself to see the count of documents in “zips” collection.

db.getCollection(‘zips’).insert({“city” : “BABYLON”, “loc” : [ 32.211100, 44.251500 ], “pop” : 300000, “state” : “IS” })

In the MongoDB Java API, you can do this via the DBCollection.insert() method – which takes the DBObject as a parameter and returns the WriteResult. Look at the code sample below to learn how to construct the DBObject instance.

We need to construct the following object:

For basic name/value pairs like “city” : “BABYLON”, you can use the BasicDBObject class

For arrays like “loc”, you can use BasicDBList class

This is how it looks when it’s all put together:

import com.mongodb.*

DB db = MongoDBHolder.getDBFromSource(“blazemeter”, “test”); DBCollection collection = db.getCollection(“zips”);

BasicDBObject object = new BasicDBObject();

WriteResult result = collection.insert(object, WriteConcern.ACKNOWLEDGED);

SampleResult.setResponseData(result.toString().getBytes());

This is how your response should look:

{ “serverUsed” : “/52.17.164.41:27017” , “n” : 0 , “connectionId” : 248 , “err” : null , “ok” : 1.0}

Now you can re-run the scenario ” How to Get the Count of the Documents in the Collection to make sure that the number of documents in the”zips” collection will be incremented by one.

Now let’s learn how to issue the “find()” command by using the JSR223 Sampler.

In order to find one document containing “city” : “BABYLON”, we need to invoke the DBCollection.findOne() method and pass the desired city name as a parameter. As we already know how to construct a DBObject to pass as a parameter, we just need to create one per query and add it to the DBCollection.findOne() method.

import com.mongodb.*

DB db = MongoDBHolder.getDBFromSource(“blazemeter”, “test”); DBCollection collection = db.getCollection(“zips”);

BasicDBObject query = new BasicDBObject(“city”, “BABYLON”);

SampleResult.setResponseData(result.toString().getBytes());

You should be able to see the document in the “Response Data” for the JSR223 Sampler in the View Results Tree Listener (just like in the MongoDB Script).

The query which returns multiple documents is pretty much the same as the query for one document. However, the DBCursor will be returned instead of the DBObject – so the results need to be handled a bit differently.

The DBCursor gives two methods which allow you to iterate through nested DBObjects:

hasNext() – checks whether another DBObject is available, it so – returns “true”, elsewise – “false”

next() – returns current DBObject and moves the cursor to the next one

Here’s how it looks when you put everything together:

import com.mongodb.*

DB db = MongoDBHolder.getDBFromSource(“blazemeter”, “test”); DBCollection collection = db.getCollection(“zips”);

BasicDBObject query = new BasicDBObject(“city”, “NEW YORK”); DBCursor cursor = collection.find(query);

while (cursor.hasNext()) {

}

SampleResult.setResponseData(resultBuilder.toString().getBytes());

By default, JMeter doesn’t print a lot into the chúng tôi file. However, if you have an issue that you’d like to get to the bottom of, you can increase the log level on a certain class or package. If you’d like to increase the details of the logging output of the MongoDB-related test elements, you can take one of two options:

Add the log_level.jmeter.protocol.mongodb=DEBUG line to the user.properties file (this can be found in the /bin folder of your JMeter installation). On the next JMeter instance, all classes under the jmeter.protocol.mongodb package will be set to the DEBUG level, which will provide additional information on what’s going on

Pass the desired log level as a command-line argument via the -L key as: jmeter -Ljmeter.protocol.mongodb=DEBUG

In any case, you’ll be able to see the extra debug output from the MongoDB test elements in the chúng tôi file

To get the best performance from the JSR223 Sampler, you just need to follow a few simple rules:

Keep the JSR223 scripts as files in the filesystem. This way they will get compiled into the bytecode and the overhead will be minimized

If, for some reason, point one isn’t possible or available, the groovy script can still be kept in the “Script” area. Just make sure that the “Compilation cache key” is set and unique for each JSR223 Sampler instance

Don’t refer to JMeter Variables as ${VariableName} in your groovy scripts as it will ruin all the benefits of the approach. Use vars.get(“VariableName”) instead.

Blazemeter systems are 100% JMeter compatible. They assume that you don’t need to do anything else except provide a groovy-all-*.jar along with your test script.

You can analyse your MongoDB load test sessions with Blazemeter’s reports. They are fully compatible with any sampler types – even when they are heavily customized.