Top 5 # Vi Sao Tre So Sinh Rung Toc Xem Nhiều Nhất, Mới Nhất 2/2023 # Top Trend | Sansangdethanhcong.com

Dấu Hiệu Trẻ Sơ Sinh Bị Mất Nước, Dau Hieu Tre So Sinh Bi Thieu Nuoc

Dấu hiệu trẻ sơ sinh bị mất nước

Trên thế giới, mất nước do tiêu chảy là một nguyên nhân tử vong hàng đầu ở trẻ em. Trẻ sơ sinh và trẻ em đặc biệt dễ bị tổn thương vì trọng lượng cơ thể tương đối nhỏ và nhu cầu cao của nước và điện giải. Trẻ cũng là nhóm có nhiều khả năng tiêu chảy.

Dấu hiệu bé bị mất nước được thể hiện qua các dấu hiệu sau

Trông bé mệt mỏi, lờ đờ.

Nước tiểu của bé có màu sậm hơn bình thường.

Hơn 6 giờ đồng hồ, bé không làm ướt một chiếc tã.

Miệng và môi của bé bị khô.

Bé khóc mà không ra nước mắt.

Dấu hiệu nghiêm trọng: mắt bé trũng xuống; chân, tay của bé có vẻ lạnh; bé ngủ liên tục hoặc quấy khóc.

Dấu hiệu nghiêm trọng

Mất nước nghiêm trọng hơn, ngoài những dấu hiệu kể trên còn có các dấu hiệu khác như da bị khô, nhăn, mềm nhão (đặc biệt là da ở bụng, phần trên cánh tay và cẳng chân), trẻ trở nên ù lì, yếu ớt, mắt trũng sâu, hay buồn ngủ, bị co gân, chuột rút, hơi thở dồn dập… Đối với trường hợp mất nước nhẹ, có thể bù lại lượng nước mất đi thông qua quá trình ăn uống thông thường. Đối với những trường hợp mất nước nghiêm trọng thì cần có sự hướng dẫn cụ thể của bác sĩ tùy theo triệu chứng và độ tuổi của trẻ.

Dấu hiệu bệnh lý rõ rệt

Khát.

Khô, dính miệng.

Buồn ngủ hoặc mệt mỏi trẻ em có thể sẽ ít hoạt động hơn bình thường.

Giảm lượng nước tiểu ít hơn sáu tã ướt một ngày cho trẻ sơ sinh và tám giờ hoặc hơn mà không đi tiểu cho trẻ lớn và thiếu niên.

Rất ít hoặc không có nước mắt khi khóc.

Mất nước nghiêm trọng, một cấp cứu y tế có thể gây ra:

Khát tột cùng.

Cơ yếu.

Nhức đầu.

Chóng mặt hoặc nhầm lẫn.

Quấy khóc hoặc buồn ngủ ở trẻ sơ sinh và trẻ em; dễ cáu gắt và sự nhầm lẫn ở người lớn.

Rất khô miệng, da và màng nhầy.

Thiếu ra mồ hôi.

Đi tiểu ít hoặc không có bất kỳ nước tiểu được sản xuất sẽ được tối màu vàng hoặc màu hổ phách.

Mắt trũng.

Ở trẻ sơ sinh, thóp trũng sự mềm điểm trên đỉnh đầu của bé.

Huyết áp thấp.

Nhịp tim nhanh.

Sốt.

Trong các trường hợp nghiêm trọng nhất, mê sảng hay bất tỉnh.

Da khô héo và thiếu tính đàn hồi và không “trả lại” khi chèn ép vào.

Nguyên nhân mất nước trong cơ thể

Nguyên nhân do bỏng: Các bác sĩ phân loại bỏng theo độ sâu của tổn thương và mức độ thiệt hại mô. Bỏng độ thứ ba là nghiêm trọng nhất, thâm nhập cả ba lớp da và thường phá hủy tuyến mồ hôi, nang lông và dây thần kinh. Những người bị bỏng độ thứ ba hoặc độ thứ hai rộng có trải nghiệm sâu sắc mất chất lỏng và kết quả có thể đe dọa tính mạng.

Tăng đi tiểu: điều này thường được chẩn đoán hoặc đái tháo đường không kiểm soát được, một bệnh ảnh hưởng đến cách cơ thể sử dụng lượng đường trong máu và thường gây ra tăng sự khát nước và đi tiểu thường xuyên. Một loại bệnh tiểu đường, đái tháo nhạt cũng là đặc trưng của khát và đi tiểu quá nhiều, nhưng trong trường hợp này gây ra là một rối loạn nội tiết tố làm cho thận không thể để bảo tồn nước. Một số thuốc – thuốc lợi tiểu, thuốc kháng histamine, thuốc huyết áp và một số loại thuốc tâm thần, cũng như rượu cũng có thể dẫn đến mất nước, nói chung bởi vì họ làm cho đi tiểu hoặc ra mồ hôi nhiều hơn bình thường.

Tiêu chảy, ói mửa: Nặng, tiêu chảy cấp tính, tiêu chảy mà đến đột ngột và dữ dội, có thể gây ra một sự mất mát to lớn của nước và chất điện giải trong một khoảng thời gian ngắn. Nếu có cùng với nôn mửa – tiêu chảy sẽ mất nhiều hơn chất lỏng và khoáng chất. Trẻ em và trẻ sơ sinh đặc biệt là nguy cơ. Mất nước là một nguyên nhân tử vong hàng đầu ở trẻ em trên toàn thế giới.

Nguyên nhân do sốt: Nói chung, sốt càng cao càng trở nên mất nước. Nếu bị sốt, thêm vào tiêu chảy và ói mửa, mất chất lỏng hơn.

Quá nhiều mồ hôi: Bị mất nước khi đổ mồ hôi. Nếu tham gia vào các hoạt động mạnh mẽ và không thay thế các chất dịch, có thể trở nên mất nước. Nóng, thời tiết ẩm tăng đổ mồ hôi và số lượng chất lỏng bị mất. Nhưng cũng có thể trở nên mất nước trong mùa đông nếu không thay thế chất dịch bị mất. Trẻ em và thanh thiếu niên những người tham gia môn thể thao có thể đặc biệt nhạy cảm, cả hai bởi vì trọng lượng cơ thể của họ nói chung là thấp hơn so với người lớn và bởi vì họ có thể không có kinh nghiệm, đủ để biết các dấu hiệu cảnh báo mất nước.

Làm gì khi trẻ sơ sinh bị mất nước?

Nếu mất nước do tiêu chảy: Nếu mắc chứng bệnh về đường ruột, bé có thể bị mất nước vì bị tiêu chảy và nôn (trớ). Không nên cho bé uống nước hoa quả, vì nó sẽ khiến tình trạng bệnh ở bé tồi tệ hơn. Bạn cũng không nên tự ý cho bé dùng thuốc chống tiêu chảy, trừ khi có chỉ định của bác sĩ. Tăng cường số lần bú trong ngày cho bé, có thể cho bé uống thêm nước.

Mất nước do sốt: Trẻ nhỏ thường xảy ra hiện tượng sốt mất nước, khi trẻ bị sốt mất nước cha mẹ cần kịp thời bổ sung nước cho trẻ, thông thường cha mẹ có thể cho trẻ bổ sung nước bằng cách cho trẻ uống dung dịch glucoza 5%, uống mỗi lần 10-15ml, 2h/1lần. Bên cạnh đó cha mẹ có thể dùng dung dịch cồn 75% pha với lượng nước tương đương thấm vào vải sạch để lau trán, lòng bàn tay, bàn chân, gáy, nách, đùi cho trẻ để tản nhiệt, hạ sốt.

Mất nước do bé từ chối uống: Đau họng hoặc chứng bệnh tay – chân – miệng có thể gây đau trong khoang miệng nên khiến bé từ chối ăn, uống. Bạn nên đưa bé đi khám để bác sĩ tìm cách trị liệu thích hợp; sau đó, bạn nên cho bé bú mẹ – thường xuyên.

Gọi ngay bác sĩ hoặc đến viện nếu có các dấu hiệu sau

Phát triển tiêu chảy nghiêm trọng, có hoặc không có nôn mửa hoặc sốt.

Đã có nôn mửa trong hơn tám giờ.

Đã có tiêu chảy trung bình trong ba ngày hoặc hơn.

Không thể uống chất lỏng.

Khó chịu hoặc mất phương hướng và buồn ngủ nhiều hoặc ít hoạt động hơn hơn bình thường.

Có bất kỳ dấu hiệu hoặc triệu chứng mất nước nhẹ hoặc vừa phải.

Các biến chứng khi cơ thể mất nước quá nhiều

Suy thận. Vấn đề này có khả năng đe dọa tính mạng xảy ra khi quả thận không còn có thể loại bỏ chất lỏng dư thừa và chất thải từ máu.

Sốc giảm lưu lượng máu. Đây là một trong những biến chứng nghiêm trọng nhất của mất nước. Nó xảy ra khi lượng máu thấp gây giảm huyết áp và giảm tương ứng lượng ôxy đến các mô. Nếu không được điều trị, sốc nặng có thể gây ra cái chết chỉ trong vài phút.

Não phù nề. Thông thường, các chất lỏng bị mất khi đang mất nước chứa cùng một lượng natri trong máu. Mặc dù vậy, trong một số trường hợp có thể mất natri nhiều hơn chất lỏng. Để bù đắp cho mất mát này, cơ thể sản xuất hạt kéo nước lại vào tế bào. Kết quả là các tế bào có thể hấp thụ quá nhiều nước trong quá trình bù nước làm cho chúng bị sưng tấy và vỡ. Hậu quả là đặc biệt nghiêm trọng khi các tế bào não bị ảnh hưởng.

Động kinh. Những xảy ra khi phóng điện bình thường trong não trở nên vô tổ chức, dẫn đến co thắt cơ bắp không tự nguyện và đôi khi để mất ý thức.

Hôn mê và tử vong. Khi không được điều trị kịp thời và thích đáng, mất nước nặng có thể gây tử vong.

Nhiệt chấn thương. Không đủ lượng chất lỏng kết hợp với tập thể dục mạnh mẽ và đổ mồ hôi nặng có thể dẫn đến tổn thương nhiệt , khác nhau ở mức độ từ nhẹ đến chuột rút nhiệt nhiệt kiệt sức để say nắng có khả năng đe dọa tính mạng.

Nhận biết các Dấu hiệu trẻ sơ sinh bị mất nước

làm gì khi trẻ sơ sinh bị mất nước, nguyên nhân mất nước trong cơ thể, các biến chứng khi cơ thể mất nước quá nhiều, dấu hiệu trẻ sơ sinh bị mất nước, dau hieu tre so sinh bi thieu nuoc

Trẻ sơ sinh hay vặn mình ngủ không ngon giấc vào ban đêm phải làm sao?

Cho bé uống nước cam hàng ngày có tốt không?

Phương Pháp Runge Kutta Giải Gần Đúng Hệ Phương Trình Vi Phân Đại Số

, University of Le Quy Don Technical

Published on

Luận văn thạc sĩ Toán học Mô tả cách giải phương trình vi phân, hệ phương trình vi phân bằng phương pháp số. Có ứng dụng MATLAB để giải

1. ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KHOA HỌC VŨ HUY BÌNH PHƯƠNG PHÁP RUNGE-KUTTA GIẢI GẦN ĐÚNG HỆ PHƯƠNG TRÌNH VI PHÂN ĐẠI SỐ LUẬN VĂN THẠC SĨ TOÁN HỌC Chuyên ngành : TOÁN ỨNG DỤNG Mã số : 60 .46 .01 .12 NGƯỜI HƯỚNG DẪN KHOA HỌC: TS. NGUYỄN VĂN MINH THÁI NGUYÊN – 2012 1Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

2. Công trình được hoàn thành tại Trường Đại học Khoa học – Đại học Thái Nguyên Người hướng dẫn khoa học: TS. Nguyễn Văn Minh Phản biên 1: TS. Nguyễn Anh Tuấn Phản biên 2: TS. Nguyễn Thị Thu Thủy Luận văn sẽ được bảo vệ trước hội đồng chấm luận văn họp tại: Trường Đại học Khoa học – Đại học Thái Nguyên Ngày 18 tháng 11 năm 2012 Có thể tìm hiểu luận văn tại Thư viện Đại học Thái Nguyên 2Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

4. 2 2.2.2 Công thức lấy vi ngược (BDF) cho các hệ phương trình vi phân đại số . . . . . . . . . . . . . . . . . . 25 2.3 Phương pháp Runge-Kutta cho hệ phương trình vi phân đại số . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.3.1 Phương pháp Runge-Kutta cơ bản . . . . . . . . . . 26 2.3.2 Các phương pháp Runge-Kutta ẩn ([8],[9]) . . . . . . 28 2.3.3 Tóm tắt các kết quả hội tụ . . . . . . . . . . . . . . 29 2.3.4 Các phương pháp nhiễu đơn . . . . . . . . . . . . . 31 2.3.5 Các phương pháp bán tường minh . . . . . . . . . . 34 2.4 Sự hội tụ đối với các bài toán chỉ số 1 . . . . . . . . . . . . 35 2.4.1 Giải phương trình vi phân thường tương đương . . . 35 2.4.2 Phương pháp tiếp cận trực tiếp . . . . . . . . . . . . 36 2.4.3 Sự hội tụ . . . . . . . . . . . . . . . . . . . . . . . . 37 2.4.4 Khai triển tiệm cận của sai số toàn cục . . . . . . . 38 2.5 Phương pháp Runge-Kutta cho hệ phương trình vi phân đại số một cách tiếp cận mới . . . . . . . . . . . . . . . . . . . 40 2.5.1 Giới thiệu . . . . . . . . . . . . . . . . . . . . . . . 40 2.5.2 Cách tiếp cận mới . . . . . . . . . . . . . . . . . . 43 2.5.3 Sự hội tụ đối với các hệ phương trình vi phân đại số có thể chuyển sang hệ số hằng . . . . . . . . . . . . 48 2.5.4 Sự co . . . . . . . . . . . . . . . . . . . . . . . . . 51 3 ỨNG DỤNG PHƯƠNG PHÁP RUNGE – KUTTA GIẢI GẦN ĐÚNG HỆ PHƯƠNG TRÌNH VI PHÂN ĐẠI SỐ 52 3.1 Ví dụ giải gần đúng phương trình vi phân thường (ODE) . 52 3.2 Ví dụ giải gần đúng hệ phương trình vi phân đại số (DAE) cài đặt bằng Matlab . . . . . . . . . . . . . . . . . . . . . . 55 Kết luận 57 Tài liệu tham khảo 58 4Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

5. 3 MỞ ĐẦU Hệ phương trình vi phân đại số là lớp phương trình có ý nghĩa ứng dụng thực tế cao, xuất hiện trong lý thuyết điều khiển, mô phỏng mạch điện, phản ứng hóa học những vấn đề trong điều khiển đòi hỏi chúng ta phải quan tâm giải quyết những hệ phương trình dạng: A(t)x + B(t)x + f(t) = 0 trong đó A, B là những ma trận hằng hoặc ma trận hàm liên tục cấp n, detA(t) = 0, gọi là hệ phương trình vi phân đại số (chú ý rằng nếu det A(t) = 0 thì đưa về dạng: x = −A−1 B(x) là phương trình vi phân thường). Lý thuyết phương trình vi phân thường đã được Newton-Leibnitz xây dựng vào cuối thế kỷ 17 đã được nghiên cứu, phát triển mở rộng theo nhiều hướng và thu được nhiều kết quả hoàn chỉnh. Hệ phương trình vi phân đại số đóng vai trò rất quan trọng trong các lĩnh vực như: Toán hoc, kĩ thuật, vật lí, kinh tế và một số ngành khác. Nội dung của luận văn nhằm giải quyết hai vấn đề chính: Vấn đề 1: Những khái niệm cơ bản của hệ phương trình vi phân đại số. Vấn đề 2: Đưa ra phương pháp Runge-Kutta giải gần đúng phương trình vi phân đại số và ứng dụng của phương pháp này giải bài toán cụ thể. Luận văn này được chia làm ba chương. Chương 1: Các khái niệm cơ bản về hệ phương trình vi phân đại số. Nội dung chương 1 trình bày tóm tắt một số kết quả đã biết của phương trình vi phân thường, một số khái niệm về hệ phương trình vi phân đại số: Chỉ số, nghiệm, phân loại, bài toán cơ bản dẫn đến hệ phương trình vi phân đại số. Chương 2: Phương pháp Runge-Kutta giải gần đúng hệ phương trình vi phân đại số. Nội dung chương 2 nhắc lại phương pháp số để giải gần đúng phương trình vi phân thường, phương pháp số cho hệ phương trình vi phân đại số trong đó có phương pháp Runge-Kutta cho hệ phương trình vi phân đại số, cách tiếp cận mới của phương pháp Runge-Kutta cho hệ phương trình vi phân đại số. 5Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

6. 4 Chương 3: Thực hiện với ví dụ cụ thể. Luận văn này được hoàn thành dưới sự hướng dẫn khoa học của TS Nguyễn Văn Minh. Tác giả xin được tỏ lòng cảm ơn chân thành nhất tới thầy về sự giúp đỡ nhiệt tình từ khi xây dựng đề cương, viết và hoàn thành luận văn. Tác giả cũng xin chân thành cảm ơn các thầy cô giáo phản biện đã đọc và góp ý để tác giả hoàn thiện luận văn của mình. Tác giả xin trân trọng cảm ơn tới Ban Giám hiệu, các thầy cô giáo trường Đại học Khoa học- Đại hoc Thái Nguyên. Những thầy cô đã tận tình dạy bảo cho tác giả trong suốt thời gian học. Đã trang bị cho tác giả và tập thể lớp những kiến thức và tạo mọi điều kiện cho lớp học tập tại trường. Dù đã rất cố gắng, nhưng chắc chắn nội dung được trình bày trong luận văn không tránh khỏi thiếu sót nhất định, tác giả rất mong nhận được sự góp ý của các thầy cô giáo và các bạn. Thái Nguyên, ngày 20 tháng 09 năm 2012 Tác giả Vũ Huy Bình 6Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

7. 5 Chương 1 CÁC KHÁI NIỆM CƠ BẢN VỀ HỆ PHƯƠNG TRÌNH VI PHÂN ĐẠI SỐ 1.1 Một số khái niệm về phương trình vi phân thường cấp 1 1.1.1 Vài mô hình đơn giản Sự rơi tự do: Xét một vật có khối lượng m được thả rơi tự do trong khí quyển gần mặt đất. Theo định luật II Newton, chuyển động của vật thể đó có thể mô tả bởi phương trình F = ma (1.1.1) Trong đó F là hợp lực tác động lên vật và a là gia tốc chuyển động. Hợp lực F có thể giả thiết chỉ bao gồm lực hấp dẫn (tỷ lệ với khối lượng của vật và hướng xuống) và lực cản (tỷ lệ với vận tốc chuyển động và hướng lên trên). Ngoài ra do gia tốc chuyển động a = dv dt nên (1.1.1) có thể viết dưới dạng m dv dt = mg − αv. (1.1.2) Trong đó g ≈ 9, 8m s2 là gia tốc trọng trường, còn α là hệ số cản. Vậy vận tốc v của vật rơi tự do thỏa mãn phương trình (1.1.2) với sự xuất hiện của đạo hàm của v. Những phương trình như vậy gọi là phương trình vi phân. 7Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

8. 6 Dung dịch hóa học: Giả sử tại thời điểm ban đầu t = t0 một thùng chứa x0 kg muối hòa tan trong 1000 lít nước. Ta cho chảy vào thùng một loại nước muối nồng độ a (kg/lít) với lưu lượng r (lít/phút) và khuấy đều. Đồng thời cho hốn hợp đó chảy ra khỏi thùng cũng với tốc độ như trên. Gọi x = x(t) là lượng muối trong thùng tại thời điểm bất kỳ. Rõ ràng tỷ lệ thay đổi lượng muối trong thùng dx dt bằng hiệu của tỷ lệ muối chảy vào (kg/phút) trừ đi tỷ lệ muối chảy ra tại thời điểm đang xét rx 1000 . (kg/phút). Vậy ta có phương trình vi phân dx dt = ar − rx 1000 (1.1.3) với dữ kiện ban đầu x(t0) = x0 1.1.2 Một số khái niệm Phương trình vi phân là phương trình có dạng F(x, y, y , y , …, y(n) ) = 0. (1.1.4) Trong đó y = y(x) là ẩn hàm cần tìm và nhất thiết phải có sự tham gia của đạo hàm (đến cấp nào đó) của ẩn. Trong trường hợp ẩn hàm cần tìm là hàm nhiều biến (xuất hiện các đạo hàm riêng) thì phương trình vi phân còn gọi là phương trình đạo hàm riêng. Để phân biệt người ta thường gọi phương trình với ẩn hàm là hàm một biến là phương trình vi phân thường là đối tượng chính được nói trong mục này. Thông thường ta xét các phương trình với ẩn hàm là hàm số một biến thực y = y(x) xác định trên khoảng mở I ⊂ R, khi đó hàm F trong đẳng thức trên xác định trong một tập mở G của R × Rn+1 . Trong trường hợp ẩn hàm cần tìm là véc tơ hàm (hàm với giá trị véc tơ) y(x) = (y1(x), …, ym(x))T ∈ Rm , F là một ánh xạ nhận giá trị trong Rm và (1.1.4) được hiểu là hệ phương trình vi phân. Ta nói một phương trình vi phân có cấp n nếu n là cấp lớn nhất của đạo hàm ẩn xuất hiện trong phương trình. Phương trình vi phân thường cấp I có dạng tổng quát F(x, y, y ) = 0 trong đó F(x, y, y ) được giả thiết là liên tục với các đạo hàm riêng của nó trên miền G ⊂ R3 . Với một số giả thiết thích hợp, phương trình vi phân 8Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

9. 7 thường cấp I có thể viết được dưới dạng sau (gọi là dạng giải ra đối với đạo hàm) y = f(x, y) (1.1.5) với f liên tục trong một miền D ⊂ R2 . Ví dụ: Các phương trình ey + ey cosx = 1 (y )2 − 2xy = ln x ∂2 u ∂x2 + ∂2 u ∂y2 = 0 lần lượt là các phương trình vi phân thường cấp I, cấp III và phương trình đạo hàm riêng cấp II. 1.1.3 Bài toán Cauchy Nghiệm của một phương trình vi phân nói chung phụ thuộc vào một hay nhiều hằng số tùy ý nào đó. Để xác định một nghiệm cụ thể, ta cần thêm một hay vài dữ kiện nào đó về nghiệm (tùy theo cấp của phương trình vi phân). Chẳng hạn, y = x3 3 + C là nghiệm tổng quát của phương trình y = x2 . Dễ thấy y = x3 3 + 1 là nghiệm (duy nhất) thỏa mãn y(0) = 1. Ta xét bài toán sau đây đặt ra đối với phương trình F(x, y, y ) = 0, gọi là bài toán Cauchy (hay bài toán giá trị ban đầu): Bài toán y(x) thỏa y = f(x, y) y(x0) = y0 (1.1.6) trong đó (x0, y0) ∈ D được gọi là điều kiện ban đầu. Chú ý: Không phải lúc nào bài toán Cauchy cũng có nghiệm, và khi có nghiệm cũng không nhất thiết có duy nhất nghiệm. Chẳng hạn phương trình y = x2 , y(0) = 0 có duy nhất một nghiệm là y = x3 3 phương trình xy = y, y(0) = 1 không có nghiệm nào, phương trình y = y1/3 , y(0) = 0 có ít nhất hai nghiệm là y ≡ 0 và y2 = 8 27 x3 . 9Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

13. 11 của C cho bởi (1.1.7) khi (x0, y0) chạy khắp D Khi đó hệ thức ϕ(x, y) = C được gọi là tích phân tổng quát của phương trình y = f(x, y). Định nghĩa 1.1.4. Nghiệm của phương trình (1.1.5) mà tại mỗi điểm (x0, y0) của nó tính duy nhất nghiệm của bài toán Cauchy được thỏa mãn được gọi là nghiệm riêng. Ngược lại nghiệm của phương trình (1.1.5) mà tại mỗi điểm của nó tính chất duy nhất nghiệm của bài toán Cauchy bị vi phạm được gọi là nghiệm kỳ dị. Nhận xét: Từ định nghĩa nghiệm tổng quát, ta suy ra rằng với mỗi điều kiện ban đầu (x0, y0) ∈ D, ta luôn tìm được C0 = ϕ(x0, y0) là nghiệm của bài toán Cauchy tương ứng. Nói cách khác, bằng cách chọn các giá trị thích hợp cho hằng số, ta có thể thu được các nghiệm riêng tùy ý của phương trình, không kể các nghiệm kỳ dị. Giải (hay còn gọi là tích phân) một phương trình vi phân là tìm tất cả các nghiệm (biểu thức nghiệm tổng quát) của phương trình đó hoặc nghiệm của bài toán Cauchy với điều kiện ban đầu cho trước. 1.2 Một số khái niệm về hệ phương trình vi phân đại số Định nghĩa 1.2.1. Hệ phương trình vi phân tuyến tính: A(t)x (t) + B(t)x(t) = q(t) (1.2.8) trong đó: A, B ∈ C(I, L(Rn )), q liên tục trên I, detA(t) = 0 hay A(t) suy biến (không khả nghịch) với mọi t ∈ I, là hệ phương trình vi phân đại số. Chú ý rằng nếu A(t) không suy biến thì (1.2.8) là phương trình vi phân thường x (t) = −A−1 (t)B(t)x + A−1 f(t), t ∈ I Ví dụ 1.2.2. Về hệ phương trình vi phân đại số Trong số nhiều phương pháp khác nhau, phương pháp mô hình hóa với các phương trình vi phân đại số đóng một vai trò quan trọng đối với các hệ cơ học có ràng buộc, các mạch điện và phản ứng hóa học. Trong phần này, chúng ta sẽ đưa ra ví dụ về mô hình hóa phương trình vi phân đại số đối với hệ cơ học có ràng buộc để thấy được các phương trình vi phân 13Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

14. 12 đại số nảy sinh từ lĩnh vực này như thế nào. Chúng ta sẽ chỉ ra các đặc điểm quan trọng của phương trình vi phân đại số, phân biệt chúng với các phương trình vi phân thường. Xét con lắc toán học trong hình 1.1. Đặt m là khối lượng của con lắc Hình 1.1: Con lắc toán học được gắn vào một thanh chiều dài l. Để mô tả con lắc trong hệ tọa độ Descarter, chúng ta viết ra thế năng U(x, y) = mgh = mgl − mgy (1.2.9) Ở đây (x(t), y(t)) là vị trí của quả nặng tại thời điểm t. Gia tốc trọng trường của trái đất là g, chiều cao của con lắc là h. Nếu chúng ta kí hiệu đạo hàm của x và y là ˙x và ˙y thì động năng là T( ˙x, ˙y) = 1 2 m( ˙x2 + ˙y2 ) (1.2.10) Số hạng ˙x2 + ˙y2 mô tả vận tốc của con lắc. Ràng buộc sẽ là 0 = g(x, y) = x2 + y2 − l2 (1.2.11) (1.2.9) (1.2.11) được sử dụng để tạo thành hàm Lagrange L(q, ˙q) = T( ˙x, ˙y) − U(x, y) − λg(x, y) Ở đây q kí hiệu cho vector q = (x, y, λ) Lưu ý rằng λ đóng vai trò như một nhân tử Lagrange. Bây giờ, các phương trình chuyển động được cho bởi phương trình Euler d dt ( ∂L ∂ ˙qk ) − ∂L ∂qk = 0, k = 1, 2, 3 Chúng ta được hệ m¨x + 2λx = 0, m¨y − mg + 2λy = 0, g(x, y) = 0 (1.2.12) 14Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

15. 13 Bằng cách đưa vào các biến bổ sung u = ˙x và v = ˙y, chúng ta thấy rằng (1.2.12) là một hệ phương trình vi phân đại số. Khi giải(1.2.12) như một bài toán giá trị ban đầu, chúng ta thấy rằng mỗi giá trị ban đầu (x(t0), y(t0)) = (x0, y0) phải thỏa mãn các ràng buộc (1.2.11) (khởi tạo phù hợp). Không có điều kiện ban đầu nào có thể được đặt ra cho λ, khi λ được ngầm xác định bởi (1.2.12). Tất nhiên, con lắc có thể được mô hình hóa bởi phương trình vi phân thường bậc hai ¨ϕ = − g l sin ϕ Khi góc ϕ được sử dụng như biến phụ thuộc. Tuy nhiên đối với các bài toán thực tế, phát biểu theo hệ phương trình vi phân thường không rõ ràng, nhiều khi là không thể. Ví dụ 1.2.3. Hệ x1 − ˙x1 + 1 = 0 ˙x1x2 + 2 = 0 (1.2.13) là một hệ phương trình vi phân đại số để thấy được điều này chúng ta xác định Jacobian ∂F ∂ ˙x của F (t, x, ˙x) = x1 − ˙x1 + 1 = 0 ˙x1x2 + 2 = 0 với ˙x = ˙x1 ˙x2 sao cho ∂F ∂ ˙x =    ∂F1 ∂ ˙x1 ∂F1 ∂ ˙x2 ∂F2 ∂ ˙x1 ∂F2 ∂ ˙x2    = −1 0 x2 0 chúng ta thấy rằng det ∂F ∂ ˙x = 0 Vậy Jacobian là ma trận suy biến bất kể giá trị của x2 Nhận xét: Trong ví dụ này đạo hàm ˙x2 không xuất hiện chúng ta tìm ˙x1 từ phương trình thứ nhất x1 − ˙x1 + 1 = 0 thu được kết quả ˙x1 = x1 + 1 thay ˙x1 vào phương trình thứ hai ˙x1x2 + 2 = 0 để viết ra một hệ phương trình vi phân đại số ˙x1 = x1 + 1 (x1 + 1) x2 + 2 = 0 Trong hệ phương trình vi phân đại số này: Phương trình ˙x1 = x1 + 1 là phương trình vi phân. Phương trình (x1 + 1) x2 + 2 = 0 là phương trình đại số. 15Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

16. 14 1.3 Phân loại hệ phương trình vi phân đại số ([4]) Thông thường các hệ phương trình vi phân đại số có cấu trúc toán học nó tùy thuộc vào phạm vi ứng dụng nhất định do đó chúng ta có các hệ phương trình vi phân đại số phi tuyến, hệ phương trình vi phân đại số tuyến tính…Thực sự kiến thức về cấu trúc toán học của phương trình vi phân đại số giúp chúng ta dễ dàng chọn lựa một giải thuật cụ thể cho từng mô hình với phần mềm thích hợp. 1.3.1 Các hệ phương trình vi phân đại số phi tuyến Trong hệ phương trình vi phân đại số F(t, x(t), x (t)) = 0 nếu hàm F là phi tuyến so với bất kỳ một trong các biến t, x hoặc x thì nó được gọi là một hệ phương trình vi phân đại số phi tuyến. 1.3.2 Các hệ phương trình vi phân đại số tuyến tính Một hệ phương trình vi phân đại số có dạng A(t)x (t) + B(t)x(t) = q(t) Ở đây A(t) và B(t) là ma trận n×n tuyến tính nếu A(t) ≡ A và B(t) ≡ B thì chúng ta có hệ phương trình vi phân đại số tuyến tính. 1.3.3 Các hệ phương trình vi phân đại số bán tường minh Một hệ phương trình vi phân đại số có dạng: x = f(t, x, z) 0 = g(t, x, z) Chú ý rằng đạo hàm của biến z không xuất hiện trong hệ phương trình vi phân đại số, biến z như thế được gọi là biến đại số trong khi đó biến x được gọi là biến vi phân. Phương trình 0 = g(t, x, z) được gọi là phương trình đại số hoặc một ràng buộc. 1.3.4 Hệ phương trình vi phân đại số ẩn hoàn toàn Hệ phương trình vi phân đại số F(t, x, x ) = 0 thuộc dạng ẩn hoàn toàn F(t, x, x ) = Ax + Bx + b(t) là hệ phương trình vi phân đại số ẩn hoàn toàn. Phương trình x1 − x1 + 1 = 0 x1x2 + 2 = 0 16Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

17. 15 Là hệ phương trình vi phân đại số ẩn hoàn toàn. Bất kỳ một hệ phương trình vi phân đại số ẩn hoàn toàn nào cũng có thể được chuyển thành hệ phương trình vi phân đại số bán tường minh. 1.3.5 Ví dụ Chuyển đổi hệ phương trình vi phân đại số ẩn hoàn toàn thành hệ phương trình vi phân đại số bán tường minh. Bài giải. Xét hệ phương trình vi phân đại số tuyến tính không biến đổi theo thời gian tuyến tính Ax + Bx + B(t) = 0 có λA + B không suy biến đối với λ vô hướng nào đó thế thì sẽ có các ma trận n × n không suy biến G và H sao cho. GAH = Im 0 0 N và GBH = J 0 0 In−m Ở đây Im là ma trận đơn vị m hàng n cột m ≤ n lũy linh. N là một ma trận (n − m) × (n − m) tức là có một số nguyên dương p sao cho Np = 0, J ∈ Rm×m và In−m là ma trận đơn vị. Bây giờ chúng ta có thể viết Ax + Bx + b(t) = 0 đối với công thức (GAH)(H−1 )x + (GBH)(H−1 )x + Gb(t) = 0 Dùng phân tích khối để viết Im 0 0 N (H−1 )x + J 0 0 In−m (H−1 )x + Gb(t) = 0 Dùng phép đổi biến u(t) = H−1 x(t) để viết Im 0 0 N u + J 0 0 In−m u + Gb(t) = 0 Phân tích véc tơ u(t) như là u(t) = u1(t) u2(t) với u1(t) ∈ Rn và u2(t) ∈ Rn−m và một cách tương ứng Gb(t) = b1(t) b2(t) sao cho: u1(t) + Ju1(t) + b1(t) = 0 Nu1(t) + u2(t) + b2(t) = 0 Sử dụng tính chất lũy linh của ma trận N tức là nhân tập hợp phương trình thứ 2 với Np−1 để nhận được u1(t) + Ju1(t) + b1(t) = 0 Np u1(t) + Np−1 u2(t) + Np−1 b2(t) = 0 Từ đây suy ra rằng Np u1(t) = 0 u1(t) = −Ju1(t) − b1(t) 17Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

18. 16 0 = Np−1 u2(t) − Np−1 b2(t) Do đó chúng ta đã chuyển hệ phương trình vi phân đại số ẩn hoàn toàn Ax + Bx + b(t) = 0 thành dạng bán tường minh. Tương tự dùng một số phép biến đổi toán học bất kỳ hệ phương trình vi phân đại số ẩn hoàn toàn phi tuyến nào cũng có thể chuyển được thành hệ bán tường minh. 1.4 Chỉ số của hệ phương trình vi phân đại số ([2],[11]) Người ta có thể phân lớp các hệ phương trình vi phân đại số nhờ khái niệm chỉ số của hệ phương trình vi phân loại này nói cách khác thì chỉ số là số đo độ lệch giữa phương trình vi phân đại số và phương trình vi phân thường đo độ phức tạp của phương trình vi phân đại số khái niệm chỉ số được đưa ra để nghiên cứu phương trình vi phân đại số. Ta đề cập đến khái niệm chỉ số của hệ phương trình vi phân đại số. Xét hệ phương trình vi phân dạng: F(t, x(t), x (t)) = 0 (1.4.14) trong đó: x : I −→ Rn , I = (a; +∞) ⊂ D, F : I × D × R → Rn (t, x, y) → F(t, x, y) D là tập mở trong Rn, F ∈ C(I × D × Rn, Rn), F , F y ∈ C(I × D × Rn, L(Rn)) KerF x (t, x, x ) = 0 với mọi (t, x, x ) ∈ I × D × R Giả thiết KerFx(t, x, x ) không phụ thuộc vào x và x tức là: KerF x (t, x, x ) = N(t) với mọi (t, x, x ) ∈ I × D × Rn . Định nghĩa 1.4.1. Không gian hạch N(t) được gọi là trơn trên I nếu có ma trận khả vi liên tục Q ∈ C1 (I, L(Rn )) sao cho (Q(t))2 = Q(t), ImQ(t) = N(t) với mọi t ∈ I Khi đó Q(t) là phép chiếu lên N(t). Đặt P(t) = In − Q(t) suy ra P ∈ C1 (I, L(Rn )) 18Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

21. 19 Định nghĩa 1.4.4. Hệ phương trình vi phân đại số f(t, x(t), x (t)) = 0 Có chỉ số là µ nếu µ là số lần lấy vi phân tối thiểu f(t, x(t), x (t)) = 0, df(t, x(t), x (t)) dt = 0, …, dµ f(t, x(t), x (t)) dtµ = 0 Sao cho các phương trình trên cho phép rút ra một hệ phương trình vi phân thường x (t) = ϕ(x(t), t). Định nghĩa 1.4.5. Số bước lấy vi phân tối thiểu cần thiết để chuyển phương trình vi phân đại số thành một phương trình vi phân thường được gọi là chỉ số vi phân của phương trình vi phân đại số. Ví dụ 1.4.6. Xét hệ phương trình vi phân đại số y = f(y, z) 0 = g(y, z) gz(đạo hàm riêng ∂g ∂z ) là khả nghịch bị chặn trong lân cận của nghiệm (1.4.17) Lấy vi phân g(y, z) = 0 ta có 0 = dg(y, z) dt = gy(y, z)y + gz(y, z)z Nếu gz(y, z) không suy biến trong lân cận của nghiệm thì hệ phương trình đã cho được chuyển thành y = f(y, z) z = −gz(y, z)−1 gy(y, z)y = −gz(y, z)−1 gy(y, z)f(y, z) Vậy chỉ 1 bước vi phân là cần thiết để mô tả z vậy hệ đã cho có chỉ số 1. Ví dụ 1.4.7. Xét hệ phương trình vi phân đại số ˙x1 = x1 + 1 (x1 + 1) x2 + 2 = 0 Lấy vi phân g(x1, x2) = 0 ta có dg(x1, x2) dt = d dt [0] suy ra d dt [(x1 + 1)x2 + 2] = 0 suy ra ˙x1x2 + (x1 + 1) ˙x2 = 0 suy ra ˙x2 = − ˙x1x2 (x1 + 1) = − (x1 + 1)x2 (x1 + 1) = −x2. Chỉ một bước vi phân là cần thiết để mô tả ˙x2 vậy hệ đã cho có chỉ số 1. 21Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

22. 20 Ví dụ 1.4.8. Xét hệ y = f(y, z) 0 = g(y) gyfz là khả nghịch bị chặn trong lân cận của nghiệm (1.4.18) Được nghiên cứu bằng cách tương tự 0 = g(y) cho ta 0 = dg(y) dt = gy(y)y = gy(y)f(y, z) = h(y, z) So sánh với ví dụ (1.4.6) chúng ta thấy rằng y = f(y, z) 0 = h(y, z) Là hệ chỉ số 1 nếu hz(y, z) vẫn không suy biến trong một lân cận của nghiệm nếu điều kiện này đúng thì hệ y = f(y, z) 0 = g(y, z) Là chỉ số 2 vì hai lần lấy vi phân tạo ra: y = f(y, z) z = −hz(y, z)−1 hy(y, z)f(y, z) = −(gy(y)fz(y, z))−1 (gy(y)(f(y, z), f(y, z))+(gy(y)(f(y, z)f(y, z)). 22Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

23. 21 Chương 2 PHƯƠNG PHÁP RUNGE-KUTTA GIẢI GẦN ĐÚNG HỆ PHƯƠNG TRÌNH VI PHÂN ĐẠI SỐ 2.1 Phương pháp số giải gần đúng phương trình vi phân thường ([1]) 2.1.1 Phương pháp Runge – Kutta Bài toán Cauchy hay còn gọi là bài toán giá trị ban đầu: Tìm y(x) thỏa mãn điều kiện: y = f(x, y) x0 ≤ x ≤ ¯x y(x0) = y0 (2.1.1) Đặt y1 = y0 + ∆y0, trong đó ∆y0 = pr1k1(h) + … + prrkr(h) ki(h) = hf(ξi, ζi); ξi = x0 + αih; α1 = 0 ; i = 1, 2, …, r ζi = y0 + βi1k1(h) + … + βi,i−1ki−1(h) Gọi ϕr(h) := y(x0 + h) − y1 = y(x0 + h) − y(x0) − ∆y0 Nếu ϕ (s+1) r (0) = 0 thì ϕr(h) = r i=0 ϕi r(0) i! hi + O(hs+1 ) Runge-Kutta chọn các hệ số αi, βij, prj từ điều kiện ϕi r(0) = 0 i = 0, 1, …, s; ϕ (s+1) r (0) = 0 với s càng lớn càng tốt. Như vậy ϕi r(0) = y (i) 0 − pr1k (i) 1 (0) + … + prrk (i) r (0) = 0(i = 0, 1, …, s), hay ta có hệ phương trình phi tuyến để xác định các hệ số αi, βij, prj ta cần giải hệ phương trình phi tuyến 23Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

24. 22 pr1k (i) 1 (0) + pr1k (i) 1 (0) + … + prrk (i) r (0) = y (i) 0 i = 0, 1, …, s (2.1.2) 2.1.2 Phương pháp Euler Ta xét trường hợp riêng của phương pháp Runge-Kutta khi r = 1. Ta có ∆y0 = p11k1(h); k1(h) = hf(x0, y0) y1 = y0 + ∆y0 = y0 + p11k1(h) = y0 + p11hf(x0, y0) mà ϕ1(h) := y(x0 + h) − y1 nên ϕ1(h) := y(x0 + h) − y0 − p11hf(x0, y0); ϕ1(0) = 0; ϕ1(0) = y0 − p11f(x0, y0) = f(x0, y0) − p11f(x0, y0) = (1 − p11)f(x0, y0). Để ϕ1(0) = 0 với mọi hàm f, ta phải có p11 = 1. Nói chung ϕ1 (0) = y0 = 0 vậy ∆y0 = p11k1(h) = hf(x0, y0) Ta nhận được công thức Euler: y1 = y0 + hf(x0, y0) (2.1.3) Nói chung yn+1 = yn + hf(xn, yn), xn = x0 + nh Sai số địa phương: Xét sai số mắc phải trên một bước với giả thiết bước trước đó tính đúng. Tại bước thứ i ta xét hàm ¯y(x) là nghiệm của bài toán ¯y = f(x, ¯y(x)) ¯y(xi)=yi Nghiệm đúng của bài toán này ¯y(xi+1) = ¯y(xi) + hf(xi, ¯y(xi)) 1! + o(h2 ) Bởi ¯y(xi) = yi và yi+1 = yi + hf(xi, yi) nên ¯y(xi+1) = yi + hf(xi, yi) + o(h2 ) = yi+1 + o(h2 ) Từ đó suy ra ¯y(xi+1) − yi+1 = o(h2 ) 2.1.3 Phương pháp Euler cải tiến Trong phương pháp Runge -Kutta (RK), ta xét trường hợp r = 2 ∆y0 = p21k1(h) + p22k2(h) Phương trình ( 2.1.2) trong trường hợp này có dạng: y (l) 0 = p21k (l) 1 (0) + p22k (l) 2 (0) (l = 1, 2 ) (2.1.4) 24Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

25. 23 Vì k1(h) = hf(x0, y0) nên k1(0) = 0; k1(0) = f(x0, y0) và k1 (0) = 0 tiếp theo k2(h) = hf(ξ2, ζ2) trong đó ξ2 = x0 + α2h; ζ2 = y0 + β21k1(h) ta có k2(h) = h f(ξ2, ζ2)+h ∂f ∂x α2 + ∂f ∂y β21k1(h) ≡ f(ξ2, ζ2)+h ∂f ∂x α2 + ∂f ∂y β21k1(h) Dế thấy k2(0) = 0; k2(0) = f(x0, y0). Tiếp theo k2 (h) = ∂f ∂x α2 + ∂f ∂y β21k1(h) + ∂f ∂x α2 + ∂f ∂y β21k1(h) +h ∂f ∂x α2 + ∂f ∂y β21k1(h) nên k2 (0) = 2 ∂f ∂x α2 + ∂f ∂y β21k1(h) h=0 = 2(α2 ∂f0 ∂x + β21f0 ∂f0 ∂y ). Ở đây chúng ta dùng ký hiệu f0 := f(x0, y0); ∂f0 ∂x , ∂f0 ∂y là đạo hàm ∂f ∂x , ∂f ∂y tương ứng tính tại điểm (x0, y0). Từ hệ thức (2.1.4) ta suy ra    y0 = f0 = p21f0 + p22f0 y0 = p21k1 (0) + p22k2 (0) = 2p22(α2 ∂f0 ∂x + β21f0 ∂f0 ∂y ) (2.1.5) Từ phương trình đầu của (2.1.5) suy ra p21 + p22 = 1. Biến đổi phương trình thứ hai của hệ (2.1.5)ta được (1 − 2α2p22) ∂f0 ∂x + (1 − 2p22β21)f0 ∂f0 ∂y = 0 (2.1.6) Vì công thức RK2 (ứng với r = 2) đúng cho mọi hàm f nên để (2.1.6) nghiệm đúng, cần 1 − 2α2p22 = 1 − 2p22β21 = 0. Như vậy α2 = β21 = 1; p21 = p22 = 1 2 và ∆y0 = 1 2h {f(x0, y0) + f(x0 + h, y0 + hf(x0, y0))} Ta nhận được công thức RK2, còn gọi là công thức Euler cải tiến. ¯y0 := y0 + hf(x0, y0) y1 = y0 + 1 2h [f(x0, y0) + f(x1, ¯y0)] (2.1.7) 2.1.4 Công thức RK4 Khi r = 4, ϕ4(h) = y(x0 + h) − y(x0) − 4 i=1 p4iki(h). Dễ thấy ϕ4(0) = 0; ϕ4(0) = y0 − 4 i=1 p4iki(0) = (1 − 4 i=1 p4i)f0 = 0. 25Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

26. 24 Từ đây suy ra 4 i=1 p4i = 1 Ngoài ra ta còn đòi hỏi ϕ4 (0) = ϕ4 (0) = ϕ (4) 4 (0) = 0 Kết quả là có 11 phương trình đối với 13 ẩn α2, α3, α4, β21, β31, β32, β41, β42, β43, p4i (i = 1, 4). Như vậy sẽ có một họ các công thức RK4. Công thức thông dụng nhất có dạng:    ∆y0 = 1 6(k1 + 2k2 + 2k3 + k4) k1 = hf(x0, y0) k2 = hf(x0 + h/2, y0 + k1/2) k3 = hf(x0 + h/2, y0 + k2/2) k4 = hf(x0 + h, y0 + k3) (2.1.8) 2.2 Phương pháp số cho các hệ phương trình vi phân đại số 2.2.1 Nhận xét Các hệ phương trình vi phân đại số thường rất phức tạp và khó giải về mặt giải tích vì khi giải các hệ phương trình vi phân đại số cần phải chú ý đến hai vấn đề quan trọng. 1. Nghiệm của các hệ phương trình vi phân đại số chỉ số thấp sẽ không là nghiệm của hệ phương trình vi phân đại số ban đầu. 2. Tìm các điều kiện ban đầu thỏa mãn cả phần vi phân và phần đại số của một hệ phương trình vi phân đại số là một công việc khó khăn, được gọi là sự phù hợp của điều kiện ban đầu. Nên hệ phương trình vi phân đại số thường được giải bằng phương pháp số. Ý tưởng: Cố gắng chuyển hệ phương trình vi phân đại số thành một phương trình vi phân thường điều này có thể đạt được qua việc lấy đạo hàm lặp đi lặp lại các phương trình đại số g(t, x, z) = 0 theo thời gian t. Dùng các nguyên tắc toán học và phép đổi biến các hệ phương trình vi phân đại số ẩn hoàn toàn có thể được chuyển thành hệ phương trình vi phân đại số bán tường minh chú ý rằng trong các hệ phương trình vi phân đại số bán tường minh nếu ma trận Jacobian ∂g ∂z suy biến không khả nghịch thì hệ phương trình vi phân đại số là chỉ số cao, bởi vì nhiều ứng dụng có các mô hình là các hệ phương trình vi phân đại số bán tường minh. 26Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

27. 25 Trong hệ phương trình vi phân đại số ở trên nếu cả f và g không phụ thuộc tường minh vào thời gian t tức là f(t, x, z) = f(x, z) và g(t, x, z) = g(x, z) thì mô hình là một hệ phương trình vi phân đại số tự quản. Các phương pháp BDF (Backward Differentiation Formula) và phương pháp kết hợp là hai phương pháp được sử dụng phổ biến nhất để tìm nghiệm số của hệ phương trình vi phân đại số. 2.2.2 Công thức lấy vi ngược (BDF) cho các hệ phương trình vi phân đại số Xét hệ phương trình vi phân đại sô giá trị ban đầu ˙x = f(t, x, z) x(t0) = x0 0 = g(t, x, z) (2.2.9) Ý tưởng của BDF: Chọn bước thời gian h sao cho ti+1 = ti+h, i = 0, 1, 2… cho trước xi = x(ti) và zi = z(ti) xác định giá trị xi+1 = x(ti+1) bằng cách dùng các giá trị hoặc ngoại suy các giá trị xi, xi−1,…,xi−m+1 của các trường hợp ở thời điểm hiện tại hoặc thời điểm trước đó của x(t). Đồng thời tính toán zi+1 = z(ti+1). Có một đa thức bậc m duy nhất P nội suy m + 1 điểm (ti+1, xi+1), (ti, xi), (ti−1, xi−1), …, (ti+1−m, xi+1−m). Đa thức nội suy này có thể được viết là P(t) = m j=0 xi+1−jLj(t). Với đa thức Lagrange Lj(t) = m l=0,l=j t − ti+1−l ti+1−j − ti+1−l , j=0,1,…,m. Chúng ta thấy rằng P(ti+1−j) = xi+1−j , j = 0, 1…, m. Đặc biệt P(ti+1) = xi+1 vì thế ˙xi+1 = ˙P(ti+1) để thu được ˙P(ti+1) = f(ti+1, xi+1) (2.2.10) nhưng ˙P(ti+1) = m j=0 xi+1−jLj(ti+1) = xi+1L0(ti+1) + m j=1 xi+1−jLj(t) đặt biểu thức này vào (2.2.10) chúng ta thu được: xi+1 = − m j=1 xi+1−j Lj(ti+1) L0(ti+1) + 1 L0(ti+1) f(ti+1, xi+1). 27Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

29. 27 yn+1 tại xn+1 = xn + h thông qua công thức yn+1 = yn + h s i=1 biY ni (2.3.13) Ở đây Y ni được định nghĩa là Y ni = f (Yni) với các giai đoạn bên trong Yni là Yni = yn + h s j=1 aijY nj với i = 1,…,s (2.3.14) Ở đây aij, bi là các hệ số xác định phương pháp với s là số giai đoạn nếu aij = 0 khi i ≤ j thì chúng ta có thể tính các giai đoạn bên trong Yn1, …, Yns lần lượt cái này theo cái kia từ công thức (2.3.14) qua việc đánh giá các hàm tường minh các phương pháp như thế được gọi là phương pháp tường minh. Ngược lại (2.3.14) hình thành nên một hệ phi tuyến đối với các giai đoạn bên trong và phương pháp được gọi là ẩn ví dụ về các phương pháp Runge-Kutta chẳng hạn như Euler thuận và ngược, các phương pháp hình thang, các phương pháp bậc 4 cổ điển của Kutta có thể tìm thấy trong bất kỳ tài liệu nào về giải tích số. Mở rộng cho các bài toán vi phân đại số. Chúng ta thấy rằng công thức Y ni = f (Yni) ở trên có dạng tương tự như chính phương trình vi phân y = f(y) trong khi đó hệ thức (2.3.13) và (2.3.14) phụ thuộc vào các hệ số của phương pháp và kích thước bước h nhưng không phụ thuộc vào dạng đặc biệt của phương trình vi phân điều này có nghĩa là chúng ta có thể mở rộng phương pháp Runge-Kutta cho các phương trình vi phân đại số F(y , y) = 0 Bằng cách định nghĩa yn+1 như một hàm của hệ (2.3.13) và (2.3.14) và F(Y ni, Yni) = 0. (2.3.15) Sẽ nảy sinh một số câu hỏi chẳng hạn như hệ các phương trình (2.3.13),(2.3.14), (2.3.15) có nghiệm duy nhất hay không việc tính toán nó thì sẽ như thế nào nó bị ảnh hưởng như thế nào do nhiễu loạn. Các phương pháp Runge-Kutta tường minh không thích hợp trực tiếp cho cách tiếp cận (2.3.13),(2.3.14),(2.3.15) bởi vì đối với các phương trình vi phân đại số một số thành phần của Y ni phải được xác định từ hệ thức (2.3.14) chẳng hạn như xét hệ y = z, 0 = y đòi hỏi ma trận hệ số A = (aij) 29Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

30. 28 khả nghịch tuy nhiên dùng một phương pháp mở rộng khác có thể áp dụng các phương pháp Runge-Kutta tường minh cho các hệ chỉ số 1 và chỉ số 2 bán tường minh có dạng (1.4.17) và (1.4.18). 2.3.2 Các phương pháp Runge-Kutta ẩn ([8],[9]) Để mô tả phương pháp thì chúng ta phải đưa về công thức ci = s j=1 aij (i = 1, …, s) (2.3.16) và các điều kiện B(p) : s i=1 bick−1 i = 1 k với k=1,…,p (2.3.17) C(q) : s j=1 aijck−1 j = ck i k với k=1,…,q và với mọi i (2.3.18) D(r) : s i=1 bick−1 i aij = ck i k với k=1,…,r và với mọi j (2.3.19) Điều kiện B(p) có nghĩa là công thức cầu phương với các trọng số b1, …, bs và các nút c1, …, cs lấy tích phân đa thức chính xác đến bậc p − 1 trên khoảng [0, 1] và điều kiện C(q) có nghĩa là đa thức ít nhất là đến bậc q −1 được lấy tích phân chính xác trên khoảng [0, ci] với mọi i qua công thức cầu phương với các trọng số ai1, …, ais. Chúng ta sẽ xét các phương pháp cổ điển tiếp theo dựa trên cầu phương Gauss, Radau và Lobatto các hệ số của chúng được xây dựng duy nhất qua các điều kiện được liệt kê như sau Gauss: B(2s), C(s), D(s) Radau IA: B(2s − 1), C(s − 1), D(s), c1 = 0 Radau IIA: B(2s − 1), C(s), D(s − 1), cs = 1 Lobatto IIIA: B(2s − 2), C(s), D(s − 2), c1 = 0, cs = 1, Lobatto IIIC: B(2s−2), C(s−1), D(s−1), c1 = 0, cs = 1, bi = asi. Điều kiện bi = asi đối với mọi i có nghĩa là yn+1 = Yns và đây là một tính chất có lợi đối với phương pháp Lobatto IIIA (đáng chú ý là phương pháp hình thang). Hàng thứ nhất của ma trận A = (aij) đều bằng 0 vì vậy A không khả 30Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

32. 30 Bảng 2.1: Phương pháp Radau IIA bậc 1 và 3 Bảng 2.2: Phương pháp Radau IIA bậc 5 32Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

33. 31 Bảng 2.3: Bậc hội tụ (2.3) các đầu vào đối với bài toán chỉ số 1 được xác nhận trong phần (2.4) cần chú ý rằng bậc hội tụ cao thu được trong những bảng này cho thấy sự phức tạp trong tính toán đối với các bài toán chỉ số cao chẳng hạn như sự hội tụ của phép lặp Newton đối với hệ phi tuyến (2.3.13) đến (2.3.15). Chúng ta nhớ là bậc hội tụ là p nếu sai số tức là sự chênh lệch giữa nghiệm chính xác và nghiệm số bị chặn bởi một hằng số nhân hp đồng đều trên các khoảng có cận đối với kích thước bước đủ nhỏ h bảng (2.3) cho thấy rằng bậc hội tụ có thể khác nhau đối với các thành phần khác nhau của hệ. Bậc của thành phần y đối với bài toán chỉ số 1 (1.4.17) giống hệt như bậc đối với các phương trình vi phân thường (chỉ số 0). Bởi vì các phương pháp Runge-kutta bất biến dưới phép biến đổi của bài toán B(y)y = a(y) trong (1.4.18) bậc hội tụ đối với thành phần y của bài toán chỉ số 2 (1.4.18) cũng có thể thu được đối với nghiệm số của B(y)y = a(y) trong điều kiện B = S I 0 0 0 T. 2.3.4 Các phương pháp nhiễu đơn Một loạt các hệ phương trình vi phân đại số có chỉ số cao tùy ý nảy sinh trong các hệ nhiễu loạn suy biến: y = f(y, z) εz = g(y, z), 0 < ε 1 (2.3.22) 33Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

35. 33 Bảng 2.4: Độ lớn sai số đối với bài toán nhiễu loạn đơn đối với ε ≤ h đối với ε ≤ h yn − y(xn) = [∆y0]n + ε[∆y1]n + O(ε2 hq ) (2.3.30) zn − z(xn) = [∆z0]n + ε[∆z1]n + O(ε2 hq−1 ). (2.3.31) Ở đây [∆y0]n, [∆z0]n, [∆y1]n, [∆z1]n là các sai số toàn cục của phương pháp Runge-Kutta được áp dụng cho hệ vi phân đại số (2.3.26) đã ước lượng đúng một cách đồng đều đối với h ≤ h0 và xn = nh ≤ const Các sai số [∆y0]n, [∆z0]n thực sự là các sai số toàn cục của phương pháp Runge-Kutta áp dụng cho hệ chỉ số 1 (2.3.25) bởi vì hệ này không phụ thuộc vào y1 và z1 do đó bậc của sai số trong các thành phần y0, z0, y1, z1 tương ứng chính xác với 4 cột trong bảng (2.3) theo cùng một thứ tự Kết hợp định lý (2.3.1) và bảng (2.3) chúng ta thu được kết quả của bảng (2.4) Đối với bài toán nhiễu loạn đơn kỳ dị M(y)y = f(y, y ) − 1 ε2 (∂U ∂y )T (y) chúng ta có thể thu được khai triển ε2 của sai số trong thành phần y và z = y dưới dạng yn − y(xn) = [∆y0]n + O(ε2 hq−2 ) (2.3.32) zn − z(xn) = [∆z0]n + O(ε2 hq−2 ) (2.3.33) Ở đây [∆y0]n, [∆z0]n là các sai số của phương pháp Runge-Kutta áp dụng cho hệ chỉ số 3 y = z0 M(y0)z0 = f(y0, z0) − gT y (y0)λ0 0 = g(y0) 35Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

36. 34 ở đây k tuyến tính theo u. 2.3.5 Các phương pháp bán tường minh Các bài toán có dạng y = f(y, z) 0 = g(y, z) (2.3.34) Phương pháp Runge-Kutta tường minh có thể áp dụng như sau: Yni = yn + h i−1 j=1 aijf(Ynj, Znj), i = 1, …, s (2.3.35) 0 = g(Yni, Zni), i = 1, …, s (2.3.36) yn+1 = yn + h s i=1 bif(Yni, Zni), (2.3.37) 0 = g(yn+1, zn+1) (2.3.38) Chúng ta xét trường hợp hệ có chỉ số 1 (1.4.17) ở đây gz khả nghịch bắt đầu từ Yn1 = yn giá trị Zn1 có thể được tính từ (2.3.36) thế Zn1 vào (2.3.35) thì chúng ta sẽ tính được Yn2 trong một bước tường minh thế thì điều này sẽ cho chúng ta Zn2 từ công thức (2.3.36). Trong trường hợp này bậc hội tụ đối với cả hai thành phần giống nhau đối với các phương trình vi phân thường điều này được giải thích ở (2.4) Trong trường hợp hệ có chỉ số 2 (1.4.18) ở đây g không phụ thuộc vào z và gyfz khả nghịch các công thức ở trên vẫn còn có thể áp dụng được một lần nữa chúng ta bắt đầu với Yn1 = yn thế công thức (2.3.35) với i = 2 vào (2.3.36) cho phép tính toán Zn1 do đó Yn2 thu được từ bước tường minh (2.3.35) theo cách này chúng ta tiếp tục đến Zns và yn+1 nhưng chúng ta không thể xác định zn+1 để thu được một gần đúng của z(xn+1) thì việc xét các phương pháp với cs = 1 và chọn zn+1 = Zns (2.3.39) là điều hợp lý tuy nhiên đối với cả hai thành phần nói chung bậc nhỏ hơn nhiều đối với các phương trình vi phân thường một ngoại lệ được cho bởi sự mở rộng của phương pháp ngoại suy h2 tổng quát đối với phương pháp này bậc đầy đủ được giữ nguyên nếu f tuyến tính theo z. 36Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

37. 35 2.4 Sự hội tụ đối với các bài toán chỉ số 1 Chúng ta xét hệ phương trình vi phân đại số y = f(y, z) 0 = g(y, z). (2.4.40) Ở đây f và g là khả vi đầy đủ (2.4.40) là bài toán chỉ số 1 chúng ta giả sử rằng (gz(y, z))−1 ≤ M. (2.4.41) Trong lân cận không chính xác gz(y, z) ký hiệu đạo hàm của g theo z khi đó chúng ta giả sử rằng các giá trị ban đầu .y0, z0 phù hợp với (2.4.40) tức là g(y0, z0) = 0. 2.4.1 Giải phương trình vi phân thường tương đương Chú ý rằng phương trình (2.4.41) cho chúng ta biết rằng trong lân cận của nghiệm phương trình thứ 2 trong (2.4.40) về mặt hình thức có thể được chuyển thành z = G(y) qua định lý hàm ẩn vì thế (2.4.40) trở thành công thức y = f(y, G(y)) (2.4.42) Có thể áp dụng phương pháp Runge-Kutta (tường minh hoặc ẩn) cho (2.4.42) và xác định thành phần z qua công thức zn = G(yn) điều này tương đương với công thức yn+1 = yn + h s i=1 biY ni Yni = yn + h s i=1 aijY nj (2.4.43) ở đây Yni = f(Yni, Zni) 0 = g(Yni, Zni) (2.4.44) và zn+1 là 0 = g(yn+1, zn+1). (2.4.45) Trong trường hợp này tất cả các kết quả về bậc, sự hội tụ và tiệm cận mở rộng của phương pháp Runge-Kutta là đúng. 37Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

38. 36 2.4.2 Phương pháp tiếp cận trực tiếp Ta có (2.4.43) và (2.4.44) đúng nhưng ở đây (2.4.45) được thay thế bằng công thức zn+1 = zn + h s i=1 biZni Zni = zn + h s i=1 aijZnj (2.4.46) Hệ thức thứ 2 của (2.4.46) định nghĩa Zni duy nhất nếu ma trận Runge- Kutta A = (aij) khả nghịch và điều đó được giả sử kể từ bây giờ. Nếu các trọng số của phương pháp Runge-Kutta thỏa mãn công thức bi = asi với i=1,…,s (2.4.47) Thì zn+1 = Zns và (2.4.45) đúng vì thế hai cách tiếp cận là tương đương. Vậy xem xét phương pháp trực tiếp Phương pháp Runge-Kutta áp dụng cho bài toán nhiễu loạn suy biến y = f(y, z) εz = g(y, z) (2.4.48) mang lại một nghiệm số phụ thuộc vào ε trong đó ε → 0 trở thành một nghiệm số được cho bởi phương pháp tiếp cận trực tiếp. Hệ có dạng Bu = a(u) với B = S I 0 0 0 T (2.4.49) Ở đây S và T là các ma trận hằng khả nghich có thể được chuyển thành (2.4.40) bằng cách nhân với S−1 và dùng pháp biến đối Tu = (y, z)T cách áp dụng trực tiếp áp dụng cho hệ được chuyển đổi tương đương với việc áp dụng phương pháp Runge-Kutta cho (2.4.49) theo công thức (2.3.13) và (2.3.14): un+1 = un + h s i=1 biUni Uni = un + h s j=1 aijUnj và BUni = a(Uni). Việc phân tích B và đổi biến không cần được tính rõ ràng trong trường hợp này. 38Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

40. 38 z(xn+1) = z(xn) + h s i=1 biz (xn + cih) + O(hp+1 ) (2.4.53) z(xn + cih) = z(xn) + h s j=1 aijz (xn + cjh) + O(hq+1 ). (2.4.54) Tính z (xn + cih) từ (2.4.54) và thế nó vào trong (2.4.53) được. z(xn+1) = R(∞)z(xn) + bT A−1 ˆZn + O(hq+1 ) + O(hp+1 ) (2.4.55) ở đây ˆZn = (z(xn + c1h), …, z(xn + csh))T Dùng ký hiệu ∆zn = zn − z(xn), ∆Zn = Zn − ˆZn và trừ (2.4.55) cho (2.4.52) thu được ∆zn+1 = R(∞)∆zn + bT A−1 ∆Zn + O(hq+1 ) + O(hp+1 ). (2.4.56) Giá trị y trong (2.4.43), (2.4.44), (2.4.46) và các giá trị y của phương pháp Runge-Kutta áp dụng trong (2.4.42) là giống nhau vì thế chúng ta đã có Yni −y(xn +cih) = O(hq+1 )+O(hp ). Chúng ta có thể rút ra Zni từ (2.4.44) để thu được Zni = G(Yni) = G(y(xn + cih)) + O(hq+1 ) + O(hp ) = z(xn + cih) + O(hq+1 ) + O(hp ). (2.4.57) Bởi vì p ≥ q + 1 với ρ = R(∞) ( 3.14) bây giờ có dạng ∆zn+1 = ρ∆zn + δn+1; δn+1 = O(hq+1 ) (2.4.58) Lặp lại phép thế công thức này cho chúng ta ∆zn = ρn ∆z0 + n i=1 ρn−i δi (2.4.59) Bây giờ các phát biểu của định lý được suy ra đối với ρ = −1 bởi vì ∆z0 = 0 kết quả đối với ρ = −1 thu được bằng cách xét khai triển tiệm cận của sai số toàn cục xem định lý (2.4.2) bên dưới. 2.4.4 Khai triển tiệm cận của sai số toàn cục Bởi vì thành phần y của nghiệm số chỉ là kết quả số đối với (2.4.42) các kết quả cổ điển đối với các phương trình vi phân thường cho ta sự tồn tại 40Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

42. 40 hd(x1) + … + hd(xn) = xn 0 d(x)dx + he1(xn) + … + hN eN (xn) + O(hN+1 ) (2.4.61) với d(x) = dm(x) của (2.4.60) ta xét trường hợp R(∞) = −1 một lần nữa quay lại (2.4.59), (2.4.60) và đối với d(x) = dm(x) chúng ta nhóm lại các số hạng là công thức Dn = (d(xn) − d(xn−1)) + (d(xn−2) − d(xn−3)) + … + (d(x2) − d(x1)) Đối với n chẵn và Dn = (d(xn)−d(xn−1))+(d(xn−2)−d(xn−3))+…+(d(x3)−d(x2))+d(x1) Đối với n lẻ chúng ta khai triển mỗi số hạng d(xi)−d(xi−1) trong Dn thành chuỗi Taylor cộng và sử dụng hệ thức loại (2.4.61) chúng ta thu được một khai triển Dn = 1 2(d(xn)−(−1)n d(x0))+h(c1(xn)−(−1)n (c1(x0))+…+hN (cN (xN )− (−1)n (cN (x0)) + O(hN+1 ) Nhóm lại các số hạng có lũy thừa h giống nhau chúng ta thu được kết quả. 2.5 Phương pháp Runge-Kutta cho hệ phương trình vi phân đại số một cách tiếp cận mới 2.5.1 Giới thiệu Chúng ta xét các hệ có hệ số biến đổi A(t)x (t) + B(t)x(t) = f(t) (2.5.62) Với A(t) suy biến. Nếu chúng ta ký hiệu Ani = A(tn+cih), Bni = B(tn+cih) và fni = f(tn+cih) việc tìm nghiệm của (2.5.62) bằng cách sử dụng phương pháp Runge-Kutta ẩn được đề xuất trong [13] là xn+1 = xn + h s i=1 biXni (2.5.63) 42Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

45. 43 2.5.2 Cách tiếp cận mới Để đưa ra cách tiếp cận mới cho các hệ phương trình vi phân đại số, chúng ta nhớ lại rằng nguồn gốc của công thức Runge-Kutta là công thức cầu phương chúng ta xét các giá trị c = cj đối với [i = j, ci ∈ [0, 1] và các công thức cầu phương 1 0 ϕ(t)dt ≈ s i=1 biϕ(ci), 1 0 ϕ(t)dt ≈ s j=1 aijϕ(cj) (2.5.68) Chúng ta có thể lấy tích phân y (t) = f(t, y(t)) trong khoảng [tn, tn + h] và [tn, tn + cih] sử dụng (2.5.68) và thay thế y(tn + h),y(tn) và y(tn + cih) bằng yn+1, yn và Yni một cách tương ứng, để thu được phương pháp Runge- Kutta thông thường. Chúng ta sẽ thực hiện theo phương pháp cầu phương được sử dụng để rút ra các phương pháp Runge-Kutta cho các phương trình vi phân thường để nhận được các phương pháp số mới cho các hệ phương trình vi phân đại số. Vì vậy chúng ta lấy tích phân hệ phương trình vi phân đại số (2.5.62) trong khoảng [tn, tn + h] và [tn, tn + cih] chúng ta lấy tích phân từng phần, và sử dụng công thức cầu phương (2.5.68) do đó phương pháp được đưa ra An+1xn+1 − Anxn + h s i=1 bi(Bni − Ani)Xni = h s i=1 bifni (2.5.69) với Xni là nghiệm của AniXni − Anxn + h s j=1 aij(Bnj − Anj)Xnj = h s i=1 aijfnj, i = 1, …, s (2.5.70) Biểu thức An+1xn+1 là giá trị gần đúng của A(tn+1)x(tn+1) tùy thuộc vào hệ phương trình vi phân đại số và phương pháp, giá trị này thực sự nằm trong ImA(tn+1). Nếu chúng ta ký hiệu DA = diag(An1, …, Ans) tương tự DB−A , X = (Xt n1 , …, Xt ns) và F(Tn) = (f(tn1)t , …, f(tns)t )t dưới ma trận hệ (2.5.70) có thể được viết là [DA + h(A ⊗ I)DB − A ]X = e ⊗ Anxn + h(A ⊗ I)F(Tn) (2.5.71) Định lý 2.5.2. Nếu ma trận A không suy biến và chùm (A, B −A ) chính quy thì tồn tại một h0 sao cho khi h ≤ h0 hệ (2.5.71) có một nghiệm duy nhất 45Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

46. 44 Chứng minh. Chúng ta phải chứng minh tính chính quy của ma trận DA +h(A⊗I)DB−A có thể được viết là Is ⊗An +h(A⊗(Bn −An))+v(h) Từ tính chính quy của chùm (A, B − A ) và ma trận hệ số A, chúng ta có thể thu được tính chính quy của Is ⊗ An + h(A ⊗ (Bn − An)) và do đó đạt được kết quả mong muốn. Trong phần sau đây chúng ta sẽ giả sử rằng A không suy biến và chùm (A, B −A ) chính quy chúng ta thấy rằng đối với phương pháp tiếp cận cổ điển chúng ta cần sự chính quy của chùm(A, B) trong khi đó đối với cách tiếp cận mới chúng ta cần sự chính quy của chùm (A, B − A ) hai ví dụ đơn giản cho chúng ta thấy rằng chúng ta có thể có các hệ phương trình vi phân đại số trong đó chỉ có thể áp dụng một phương pháp và không thể áp dụng phương pháp kia. Ví dụ 1: Trong hệ phương trình vi phân đại số: 0 0 1 −t x (t) + 1 −t 0 0 x(t) = f(t) . Chùm (A, B) suy biến (nhớ rằng hệ phương trình vi phân đại số này có nghiệm duy nhất mặc dù chùm suy biến) nhưng chùm (A, B − A ) chính quy. Ví dụ 2: Trong hệ phương trình vi phân đại số: 0 1 1 t x (t) + 1 0 t 1 x(t) = f(t) . Chùm (A, B − A ) chính quy nhưng chùm (A, B) suy biến. Chúng ta biết rằng tính dễ xử lý với chỉ số 2 của chùm (A, B), đàm bảo sự tồn tại và tính duy nhất của nghiệm với các điều kiện ban đầu phù hợp, tương đương với tính chính quy với chỉ số 2 của chùm cục bộ hiệu chỉnh (A, B−AP ) nhưng không tính đến tính chính quy của chùm (A, B) Trường hợp trên không xảy ra cho chỉ số 1, Qua[9] chùm (A, B) chính quy với chỉ số 1 nếu và chỉ nếu chùm (A, B − AP ) chính quy với chỉ số 1 một tính toán đơn giản thiết lập mối liên hệ giữa chùm này với chùm (A, B−A ). Định lý 2.5.3. Chùm (A, B − A ) chính quy với chỉ số 1 nếu và chỉ nếu chùm (A, B − AP ) chính quy với chỉ số 1. 46Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

48. 46 và nghiệm có thể được viết là x(t) = Ps(t)x(t) + Qs(t)x(t) = [A(t) + B(t)Qs(t)]−1 A(t)x(t) + Qs(t)[A(t) + B(t)Qs(t)]−1 f(t) Điều này có nghĩa là Ps(t)x(t) có thể được tính từ A(t)x(t) và Qs(t)x(t) có thể được tính từ số hạng không thuần nhất. Vì thế đối với nghiệm số chúng ta có thể tính ¯xn+1 = un+1 + vn+1 (2.5.72) với un+1 ∈ S(t) từ An+1xn+1 là un+1 = (An+1 + Bn+1Qs,n+1)−1 An+1xn+1 (2.5.73) và vn+1 ∈ Ker(A(tn+1)) là vn+1 = Qs(tn+1)[A(tn+1) + B(tn+1)Qs(tn+1)]−1 f(tn+1) (2.5.74) Nếu phương pháp chính xác cứng mà chúng ta chọn giai đoạn bện trong thứ s là gần đúng tại tn+1, ¯xn+1 = Xs một phần của nghiệm giống như (2.5.72)-(2.5.74). Định lý 2.5.6. Đối với các phương pháp chính xác cứng un+1 trong (2.5.73) trùng với Ps,n+1Xs Chứng minh. Đối với các phương pháp chính xác cứng, thực sự An+1xn+1 = An+1xs vì thế un+1 = (An+1 + Bn+1Qs,n+1)−1 An+1xn+1 = (An+1 + Bn+1Qs,n+1)−1 An+1Xs = Ps,n+1Xs Đối với một hệ phương trình vi phân đại số chỉ số 1, Qs,n+1Xs và vn+1 trong (2.5.74) cũng trùng nhau. Định lý 2.5.7. Đối với phương pháp chính xác cứng và các hệ phương trình vi phân đại số chỉ số 1 với A hằng số thì phép chiếu (2.5.73) và (2.5.74) và ¯xn+1 = Xs, cho cùng một gần đúng. Chứng minh. Vì A là hằng số chúng ta có thể viết (2.5.71) là DBX = 1 hDA(A−1 ⊗ I)(e ⊗ xn − X) + F(Tn) hoặc nếu chúng ta ký hiệu A1 = (A + BQs) DQs X = −DA−1 1 BPs X = 1 hDA−1 1 A(A−1 ⊗ I)(e ⊗ xn − X) + DA−1 1 F(Tn) Chúng ta nhân với DQs và sử dụng A−1 1 A = Ps, Qs A−1 1 A = Qs để thu được DQs X = DQs A−1 1 F(Tn) đặc biệt đối với giai đoạn cuối cùng điều đó muốn nói đến (2.5.74). 48Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

49. 47 Nếu A không phải là hằng số đối với một hệ phương trình vi phân đại số thuần nhất, thì phép chiếu và ¯xn+1 = Xs vẫn cho cùng một giá trị gần đúng. Định lý 2.5.8. Đối với phương pháp chính xác cứng và các hệ phương trình vi phân đại số thuần nhất nếu Img(A(t)) = R không phụ thuộc t và A (t)P(t) = 0 thì Xs ∈ S(tn+1). Chứng minh. Thực sự (2.5.71) cho ta DB−A X = 1 h(A ⊗ I)−1 (e ⊗ Anxn − DAX) Hoặc nếu chúng ta dùng A (t) = A (t)P(t) + A (t)Q(t) = A (t)P(t) − A (t)Q(t) và A (t)P(t) = 0 DBX = −DAQ X + 1 h(A ⊗ I)−1 (e ⊗ Anxn − DAX) ∈ R và đặc biệt đối với giai đoạn bên trong cuối cùng Bn+1Xs ∈ R và do đó Xs ∈ S(tn+1). Hệ quả 2.5.9. Đối với phương pháp chính xác cứng và các hệ phương trình vi phân đại số thuần nhất nếu Img(A(t)) = R không phụ thuộc vào t và A (t)P(t) = 0 thì phép chiếu và ¯xn+1 = Xs cho cùng một giá trị gần đúng. Chứng minh. Từ định lý trên Xs ∈ S(tn+1) vì vậy Qs,n+1Xs = 0 Từ hệ quả (2.5.5) và công thức (2.4.53) đối với các phương pháp chính xác cứng, nếu ma trận A là hằng số, phương pháp tiếp cận mới .¯xn+1 = Xs hoặc phép chiếu (2.5.73) và (2.5.74) và phương pháp tiếp cận cũ cho cùng một giá trị gần đúng. Đối với phương pháp chính xác không cứng, ngay cả khi A là hằng số, phương pháp cổ điển và phương pháp tiếp cận mới cho kết quả khác nhau. Nếu chúng ta sử dụng (2.5.72) và (2.5.73) để thu được cách tiếp cận mới, dưới dạng A˜xn+1 = Axn+1 chúng ta thu được Ps(tn+1)xn+1 = Ps(tn+1)˜xn+1 một phần trong S(tn+1) giống nhau trong cả hai cách tiếp cận. Tuy nhiên, nói chung. Qs(tn+1)xn+1 = Qs(tn+1)˜xn+1 = Qs(tn+1)[A + B(tn+1)Qs(tn+1)]−1 f(tn+1) Hãy xét ví dụ, trường hợp hệ số hằng chỉ số 1 bán tường minh. Cách tiếp cận mới chỉ đơn giản là tiếp cận gián tiếp cho các hệ phương trình vi phân đại số chỉ số 1 bán tường minh[8, p. 404]. Cách tiếp cận cổ điển tương ứng với phương pháp tiếp cận trực tiếp. Chú ý: Đối với các phương pháp Lobatto IIIA, ma trận A suy biến nhưng 49Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

50. 48 ma trận con A = (aij)i,j≥2 khả nghịch và phương pháp chính xác cứng. Phương pháp mới này cũng có thể được áp dụng giống như được thực hiện cho các hệ phương trình vi phân đại số [10] bằng cách định nghĩa Xn1 = xnvà tính Xn+1 = Xns Đối với phương pháp tiếp cận mới, đối với giai đoạn bên trong thứ nhất, chúng ta có AnXn1 − Anxn = 0 Nếu An suy biến, có vô số vectơ thỏa mãn hệ thức này và có hai khả năng để tìm Xn1 chúng ta có thể chọn Xn1 = xn hoặc chúng ta có thể chiếu. Bởi vì phương pháp chính xác cứng, để thu được ¯xn+1 chúng ta có thể chọn ¯xn+1 = Xns hoặc chúng ta có thể chiếu. Vì vậy, chúng ta có bốn khả năng: (1) Xn1 = xn và ¯xn+1 = Xns. (2) Xn1 = xn và ¯xn+1 được chiếu. (3) Xn1 được chiếu và ¯xn+1 = Xns. (4) Xn1 được chiếu và ¯xn+1 được chiếu. Các tùy chọn (1) và (3) áp dụng cho các quy tắc hình thang (phương pháp gần đúng hình thang). Nếu A là một ma trận hằng, chọn lựa Xn1 = xn dẫn đến sơ đồ quy tắc hình thang được đưa ra trong [9] 2.5.3 Sự hội tụ đối với các hệ phương trình vi phân đại số có thể chuyển sang hệ số hằng Đối với một phương pháp BDF k bước nhất định j=0k αkjxn−j = hfn các phương pháp k bước cải biên được định nghĩa cho các hệ phương trình vi phân đại số hệ số biến đổi tuyến tính (2.5.62) là [αk,0An + h(Bn − An)] xn + k j=1 αkjAn−jxn−j = hfn và do đó, phương pháp được đề xuất cho phương pháp Euler ẩn (BDF1) trùng hợp với cách tiếp cận mới cho các phương pháp Runge-Kutta với ¯xn+1 = Xs. Sự hội tụ được nghiên cứu cho các hệ phương trình vi phân đại số có thể chuyển sang hệ số hằng, tức là đối với các hệ phương trình vi phân đại số tồn tại một L(t) khả vi không suy biến sao cho phép biến đổi x = L(t)y chuyển (2.5.62) sang một hệ có hệ số hằng có thể giải được. Các hệ như thế được đặc trưng bởi định lý sau đây. Định lý 2.5.10. Hệ (2.5.62) có thể biến đổi sang các hệ số hằng khi và chỉ khi (1) sA + B − A khả nghịch trên I đối với s nào đó, và (2) 50Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

51. 49 A(sA + B − A )−1 không đổi trên I. Nếu (1) và (2) đúng, chúng ta có thể chọn L(t) = (sA + B − A )−1 để thu được hệ Cy (t)+(I −sC)y(t) = f(t) trong đó C = AL. Vì vậy, nếu chúng ta kí hiệu yn = L−1 n xn, Yni = L−1 ni Xni và tính đến B − A = (I − sC)L−1 cho các hệ có thể chuyển được (2.5.69) và (2.5.70) là Cyn+1 − Cyn + h s i=1 bi(I − sC)Yni = h s i=1 bifni (2.5.75) với Yni là nghiệm của Cyni − Cyn + h s i=1 aij(I − sC)Yni = h s j=1 aijfnj, i = 1, …, s (2.5.76) Tương ứng với việc lấy tích phân của hệ phương trình vi phân đại số hệ số hằng tuyến tính Cy (t)+(I −sC)y(t) = f(t) với phương pháp mới. Trong trường hợp này, chúng ta thấy rằng nghiệm thu được trong (2.5.75) phù hợp với (2.5.76). Đối với trường hợp chỉ số 1, các hệ phương trình vi phân đại số hệ số hằng được chuyển đổi cũng có chỉ số 1. Nếu chúng ta tìm gần đúng số (nghiệm gần đúng bằng phương pháp số) ¯xn+1 qua (2.5.73) và (2.5.74) quả thực x(tn+1) − ¯xn+1 = (An+1 + Bn+1Qs,n+1)−1 [An+1x(tn+1) − An+1xn+1] = (An+1 + Bn+1Qs,n+1)−1 [Cy(tn+1) − Cyn+1]. (2.5.77) Đối với bất kỳ hệ phương trình vi phân đại số nào, nếu phương pháp này chính xác cứng và chúng ta tìm được gần đúng số qua ¯xn+1 = Xs chúng ta có x(tn+1) − ¯xn+1 = L(tn+1) [y(tn+1) − Ys] (2.5.78) Chúng ta nghiên cứu bậc hội tụ cho các phương pháp mới áp dụng cho các hệ phương trình vi phân đại số có thể chuyển sang hệ số hằng. Đối với chùm (A, B) chỉ số v dạng chuẩn tắc Kronecker là PAQ = diag(I, N),PBQ = diag(C, I) trong đó P và Q là các ma trận chính quy, và N là lũy linh với bậc lũy linh là v. Nếu chúng ta nhân với P và thực hiện phép đổi biến x = Q(yt , zt )t chúng ta tách hệ phương trình vi phân đại số tuyến tính hệ số hằng. Dạng chuẩn tắc Kronecker cho phép chúng ta tách (2.5.69) và (2.5.70) để thu được yn là nghiệm số cho phương trình vi phân thường y(t) + Cy(t) = f(t) Vì vậy, nếu phương pháp có bậc p đối với các phương 51Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

52. 50 trình vi phân thường, chúng ta có yn − y(tn) = v(hp ). Nếu hệ phương trình vi phân đại số có chỉ số 1 và có thể chuyển sang hệ số hằng, hệ phương trình vi phân đại số mới cũng có chỉ số 1. Trong các định lý sau, chúng ta đưa ra bậc sai số Cy(tn) − Cyn trong (2.5.77). Định lý 2.5.11. Xét một hệ phương trình vi phân đại số hệ số hằng tuyến tính với chỉ số v = 1 Nếu phương pháp Runge-Kutta có bậc Kd đối các phương trình vi phân thường thì nghiệm số thu được với phương pháp mới thỏa mãn Ax(tn) − A¯xn = v(hkd ). Chứng minh. Đối với bài toán chỉ số 1, chúng ta có, đối với ma trận chính quy P cho chúng ta dạng chuẩn tắc Kronecker Ax(tn+1) − Axn+1 = P I 0 y(tn+1) − yn+1 z(tn+1) − zn+1 = P y(tn+1)−yn+1 0 = v(hp) Từ định lý này và công thức (2.5.77), chúng ta phát biểu định lý sau đây. Định lý 2.5.12. Hãy xét một hệ phương trình vi phân đại số chỉ số 1 tuyến tính có thể chuyển sang hệ số hằng. Nếu phương pháp Runge-Kutta có bậc Kd đối với các phương trình vi phân thường, thì nghiệm số thu được với phương pháp mới qua phép chiếu (2.5.74) và (2.5.73) thỏa mãn x(tn) − ¯xn = v(hkd ). Đối với các hệ phương trình vi phân đại số chỉ số cao có thể chuyển sang hệ số hằng, chúng ta có kết quả sau. Định lý 2.5.13. Chúng ta xét một hệ phương trình vi phân đại số (2.5.62) có thể chuyển sang hệ phương trình vi phân đại số hệ số hằng. Nếu phương pháp Runge-Kutta chính xác cứng và có bậc Kd đối với các phương trình vi phân thường, thì giá trị gần đúng tính bằng phương pháp số mới ¯xn+1 = Xs cho thấy rằng x(tn+1) − Xs = v(hkv ) với Kv = min 2≤i≤v (p, Ka,i − i + 2) và Ka,l số nguyên lớn nhất sao cho bt A−i e = bt A−l cl−i (l − i)! , i = 1, 2, …, l − 1 bt A−i ci = i(i − 1)…(i − l + 2), i = l, l + 1, …, kal . Chứng minh. Hệ quả (2.5.5) phát biểu rằng phương pháp tiếp cận mới với ¯xn+1 = Xs và phương pháp tiếp cận cổ điển cho cùng một gần đúng. Do đó x(tn+1)−Xs = v(hkv ) với Kv là bậc của phương pháp Runge-Kutta cho một hệ phương trình vi phân đại số hệ số hằng tuyến tính với chỉ số v [6] Chúng ta thấy rằng Ka,l = ∞ đối với các phương pháp chính xác cứng. 52Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

53. 51 2.5.4 Sự co Mục tiêu của chúng ta là đưa ra những phương pháp tiếp cận mới để duy trì tính chất co của nghiệm số, và tương tự đối với nghiệm chính xác. Với cách tiếp cận mới được đưa ra, điều đó có thể được chứng minh dễ dàng. Định lý 2.5.14. Chúng ta xét hệ phương trình vi phân đại số thuần nhất (2.5.62) và giá trị gần đúng An+1xn+1 thu được qua (2.5.69) và (2.5.70). Nếu phương pháp Runge-Kutta ổn định đại số , và xni ∈ Vni là một không gian con sao cho µV [Ani, Bni − Ani] ≤ 0 Thì An+1xn+1 ≤ AnXn . Chứng minh. Nếu chúng ta kí hiệu Wni = h(Bni − Ani)Xni,M = BA + At B − bbt , mi,j là các yếu tố (i, j) của M, và theo [8] ta nhận được An+1xn+1 2 = Anxn 2 + 2 Anxn, s i=1 biWni + s k=1 bkWnk, s i=1 biWni = Anxn 2 − s i,j=1 mij Wni, Wnj + 2h s i=1 bi AniXni, −(Bni − Ani)Xni ≤ Anxn 2 − s i,j=1 mij Wni, Wnj + 2h s i=1 biµVi [Ani, Bni − Ani] Anixni 2 ≤ Anxn . Đối với trường hợp chỉ số 1, nếu Img(A(t)) là hằng số và A P = 0, thì theo hệ quả (2.5.9), các giai đoạn bên trong Xni và nghiệm chính xác tại điểm tni nằm trong cùng một không gian con S(tni). Vì thế, chúng ta có thể chọn Vni = S(tni) 53Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

54. 52 Chương 3 ỨNG DỤNG PHƯƠNG PHÁP RUNGE – KUTTA GIẢI GẦN ĐÚNG HỆ PHƯƠNG TRÌNH VI PHÂN ĐẠI SỐ 3.1 Ví dụ giải gần đúng phương trình vi phân thường (ODE) Ví dụ Dùng công thức Runge-Kutta tìm nghiệm gần đúng của bài toán Cauchy y = y − x2 + 1, 0 ≤ x ≤ 1 y(0) = 0.5 Với n = 5 Tính sai số biết nghiệm chính xác là : y(x) = (x + 1)2 −0.5ex Bai giải. Ta có h = 0.2 x0= 0,x1= 0.2,x2= 0.4,x3= 0.6,x4= 0.8,x5= 1 Công thức Runge-Kutta bậc 4 yk+1 = yk + (k1 + 2k2 + 2k3 + k4)/6 k1 = hf(xk, yk) k2 = hf(xk + h 2 , yk + k1 2 ) k3 = hf(xk + h 2 , yk + k2 2 ) k4 = hf(xk + h, yk + k3) (3.1.1) Áp dụng công thức Runge-Kutta bậc 4 ta có k1 = hf(xk, yk) = 0.2(yk − x2 k + 1) 54Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

55. 53 k2 = hf(xk + h 2 , yk + k1 2 ) = 0.2 yk + 0.1(yk − x2 k + 1) − (xk + 0.1)2 + 1 = 0.2(1.1yk − 1.1×2 k − 0.2xk + 1.09) k3 = hf(xk + h 2 , yk + k2 2 ) = 0.2 yk + 0.1(1.1yk − 1.1×2 k − 0.2xk + 1.09) − (xk + 0.1)2 + 1 = 0.2(1.11yk − 1.11×2 k − 0.22xk + 1.099) k4 = hf(xk + h, yk + k3) = 0.2 yk + 0.2(1.11yk − 1.11×2 k − 0.22xk + 1.099) − (xk + 0.2)2 + 1 = 0.2(1.222yk − 1.222×2 k − 0.444xk + 1.1798) Xây dựng hàm rk4 trong matlab để giải phương trình vi phân theo phương pháp trên. function[x, y] = rk4(f, x0, x1, y0, h) if nargin < 4, error( Vuilongnhapdudoiso!! ), end; if nargin < 5, m = input( Nhapsodoanchian = ); , h = (x1 − x0)/m; end; x = []; x(1) = [x0]; n = (x1 − x0)/h; for i = 1 : n, x(i + 1) = x(i) + h; end; y = []; y(1) = [y0]; for i = 1 : n K1 = h ∗ f(x(i), y(i)); K2 = h ∗ f(x(i) + h/2, y(i) + K1/2); K3 = h ∗ f(x(i) + h/2, y(i) + K2/2); K4 = h ∗ f(x(i) + h, y(i) + K3); y(i + 1) = y(i) + (K1 + 2 ∗ K2 + 2 ∗ K3 + K4)/6; end; 55Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

Tính Kết Quả Vi Sinh

Tính kết quả vi sinh là bước quan trọng trong phòng vi sinh, lựa chọn cách tính sai dẫn báo cáo sai kết quả.

Nguyên tắc đếm khuẩn lạc

Khi đếm khuẩn lạc đặc trưng, hay khuẩn lạc giả định, mô tả hình thái khuẩn lạc dựa theo phương pháp thử tương ứng.

Các trường hợp sau được xem là 1 khuẩn lạc:

Khuẩn lạc mọc loang rộng;

Các khuẩn lạc loang tạo thành chuỗi.

Khi phần loang < ¼ đĩa: đếm ở phần không bị loang và tính số đếm tương ứng cho cả đĩa.

Số đếm tổng khuẩn lớn nhất cho phép trên đĩa 90 mm là 300 CFU ;

Số đếm khuẩn lạc đặc trưng hoặc giả định lớn nhất là 150 CFU .

Tính kết quả vi sinh và biểu diễn kết quả (phương pháp đổ đĩa)

1.Trường hợp chung (đếm tổng khuẩn hoặc khuẩn lạc đặc trưng)

Để kết quả có giá trị, yêu cầu chung cho việc đếm các khuẩn lạc là các đĩa phải có ít nhất 10 khuẩn lạc (tất cả các khuẩn lạc, khuẩn lạc đặc trưng hay các khuẩn lạc đã được khẳng định).

Trường hợp làm thử nghiệm với mẫu thử 1đĩa/nồng độ: Tổng lượng vi sinh vật có trong mẫu thử, N, được lấy trung bình từ hai nồng độ pha loãng kế tiếp nhau được tính theo công thức sau:

N= ∑c/ (v x 1.1x d) (CFU /g)/ (CFU /mL)

Trường hợp làm thử nghiệm với mẫu thử 2 đĩa/nồng độ: Tổng lượng vi sinh vật có trong mẫu thử, N, được lấy trung bình từ hai nồng độ pha loãng kế tiếp nhau được tính theo công thức sau:

N= ΣC/( Vx (n1 + 0.1 x n2) x d)) (CFU /g)/ (CFU /mL)

Trong đó

∑C  tổng số khuẩn lạc đếm được từ hai nồng độ pha loãng liên tiếp, trong đó số khuẩn lạc đếm được ít nhất phải là 10;

V       thể tích mẫu cấy vào mỗi đĩa, mL;

d       hệ số pha loãng ứng với độ pha loãng thứ nhất.

n1     số đĩa ở nồng độ pha loãng thứ nhất.

n2     số đĩa ở nồng độ pha loãng thứ hai .

Làm tròn kết quả tính toán thành hai chữ số có nghĩa.

Nếu chữ số thứ 3 nhỏ hơn 5 thì giữ nguyên chữ số phía trước.

Nếu chữ số thứ 3 lớn hơn hoặc bằng 5 thì tăng 1 đơn vị cho chữ số phía trước.

Lấy chữ số kết quả là từ 1,0 tới 9,9 nhân cho lũy thừa của 10, hoặc số nguyên với hai chữ số có nghĩa.

Biểu thị kết quả như sau: Số vi sinh vật N có trong 1 mL hoặc 1 g mẫu.

2.Trường hợp sau khi được xác nhận lại hoặc khẳng định

Số khuẩn lạc trên mỗi đĩa nghiệm đúng thử nghiệm khẳng định được tính theo công thức sau:

a=C x (b/A)

Trong đó

b:   số khuẩn lạc nghiệm đúng trong số các khuẩn lạc chọn làm khẳng định A;

C:  tổng số khuẩn lạc nghi ngờ đếm được trên đĩa.

Làm tròn kết quả tính toán thành số nguyên gần nhất.

Nếu số đầu tiên sau dấu thập phân nhỏ hơn 5 thì không thay đổi giá trị phía trước.

Nếu số đầu tiên sau dấu thập phân lớn hơn hoặc bằng 5 thì tăng 1 đơn vị cho chữ số phía trước.

Tính toán số vi sinh vật nghiệm đúng có trong mẫu kiểm tra theo công thức:

N= ∑c/ (v x 1.1x d) (CFU /g)/ (CFU /mL)

Trong đó

tổng số khuẩn lạc nghiệm đúng từ hai nồng độ pha loãng liên tiếp, CFU .

V       thể tích mẫu cấy vào mỗi đĩa, mL;

d       hệ số pha loãng ứng với độ pha loãng thứ nhất.

Làm tròn và biểu diễn kết quả như ở phần 2.1.

Giá trị ước lượng.

2.3.1. Số đếm ở độ pha loãng đầu tiên < 10 khuẩn lạc

Nếu đĩa có “4 ≤ a (CFU ) < 10, tính toán kết quả như trường hợp chung ở phần 2.1, báo cáo kết quả là “số ước lượng” vi sinh vật trên g hoặc mL sản phẩm

Nếu đĩa có 1 – 3 CFU , độ chính xác của kết quả thấp, do đó kết quả sẽ được báo cáo: “Số lượng vi sinh vật có trong mẫu < (4/d) CFU /g hoặc CFU /mL

2.3.2. Độ pha loãng đầu tiên không có khuẩn lạc

Nếu đĩa từ mẫu kiểm tra (sản phẩm lỏng), hoặc huyền phù ban đầu (sản phẩm khác), hoặc từ độ pha loãng đầu tiên đã cấy, không có khuẩn lạc nào thì biểu thị kết quả như sau:

Ne< 1/d (CFU / mL) hoặc (CFU /g).

d:  độ ph a loãng của dịch huyền phù ban đầu hoặc độ pha loãng đầu tiên đã cấy.

Các trường hợp đặc biệt khi đếm khuẩn lạc đặc trưng hoặc giả định

1/d1 <Ne<1/d2  (CFU / g) hoặc (CFU /mL)

Ne<1/d2 mL (g)

               d1 và d2 là hệ số pha loãng tương ứng với số đếm khuẩn lạc thu nhận x1 và x2.

Các trường hợp đặc biệt khác

300 ≤ x1 ≤ 334 (hoặc 150 ≤ x1 ≤ 167), áp dụng công thức tính ở 2.1.

3.Tính toán và biểu diễn kết quả phương pháp màng lọc: (Theo ISO 8199)

Đối với phương pháp màng lọc khi đọc kết quả chọn các đĩa có số đếm tổng các khuẩn lạc trong khoảng 10-200 hoặc lựa chọn các đĩa có số đếm khuẩn lạc điển hình trong khoảng 10-100.

Trường hợp chung

Tổng số khuẩn lạc trên màng lọc trong một đơn vị thể tích mẫu lọc sẽ được tính thức công thức:

Cs = Zx Vs/ Vtot

Trong đó:

Cs : số khuẩn lạc có trong thể tích mẫu Vs

Z : số khuẩn lạc trên màng ở độ pha loãng d1, d2,… di

Vs : thể tích được chọn để biểu diễn kết quả

Vtot : tổng thể tích tính được từ mẫu ban đầu trên các màng hoặc là tổng các phần riêng biệt   từ mẫu thử , được tính theo công thức                                 Vtot = n2 x V2 x d2 + n2 x V2 x d2+ … ni x Vi x di

                              Trong đó:

n1, n2, ni :     số màng ở độ pha loãng d1, d2,… di

V1, V2, Vi :    thể tích sử dụng ở độ pha loãng d1, d2,… di

d1, d2, di :     độ pha loãng ở thể tích V1, V2, Vi

(d = 1 đối với không pha loãng, d = 0.1 là mẫu pha loãng 10 lần…)

Trường hợp khuẩn lạc sau khi được xác nhận lại hoặc khẳng định

Số khuẩn lạc trên màng ở các độ pha loãng được tính theo công thức sau:

Z=ka/n

Trong đó:

Z :    Số khuẩn lạc trên màng

k :    Số khuẩn lạc cho kết quả dương tính

n :    Số khuẩn lạc được chọn để khẳng định.

a :    Tổng số khuẩn lạc nghi ngờ trên màng

4.3.2.2. Nếu sau khẳng định, ở nồng độ ban đầu (100), số khuẩn lạc Coliform/ chúng tôi đều <10.

  4.3.2.3. Nếu sau khẳng định, không có khuẩn lạc nghiệm đúng thì kết quả được báo cáo là

< 1/Vtot   (CFU /Vs mL) hay bằng 0 khi không có khuẩn lạc ở nồng độ nguyên (100).

Tính toán và biểu diễn kết quả phương pháp Pettri film 

Theo TCVN 9977:2013; TCVN 9975:2013; TCVN 9980:2013

Chọn và đếm các đĩa có số khuẩn lạc trong khoảng quy định đối với từng phương pháp:

+ TPC: Đếm các đĩa có số khuẩn lạc nằm trong khoảng 30÷300.

+ chúng tôi (AOAC 991.14): Đếm các đĩa có số khuẩn lạc trong khoảng 15 ÷150.

+ Enterobacteriaceae (AOAC OMA 2003.01): Đếm các đĩa có số khuẩn lạc nằm trong khoảng10÷ 150.

+ Staphylococcus aureus (AOAC OMA 2003.11): Đếm các đĩa có số khuẩn lạc trong khoảng 15÷150 khuẩn lạc.

Tổng số khuẩn lạc trên đĩa (hoặc trung bình số khuẩn lạc/đĩa nếu làm 2 đĩa/nồng độ): n.

Kết quả sẽ được tính như sau:

N= n x 1/d

(d là độ pha loãng tương ứng).

Nếu số đếm khuẩn lạc trên tất cả các đĩa ở các nồng độ đều nhỏ hơn cận dưới của khoảng đếm khuẩn lạc ( n< 30,n<10, n<15) thì kết quả được tính như sau:

N= n x 1/d

Với n là số đếm chính xác có trên đĩa ở độ pha loãng thấp nhất, d là độ pha loãng thấp nhất.

Kết quả được báo cáo là số ước lượng.

Cần tư vấn ISO 17025 mời gọi Tel 0919 099 777

Suy Giap O Tre Em 2

Published on

1. 1 SUY GIÁP TRẺ EM (Hypothyroidie – Hypothyroidism) chúng tôi Trần Thị Mộng Hiệp Boä Moân Nhi Tröôøng ÑHYK PNT Ng. Trưởng khoa Thận -Maùu – Noäi Tieát BV Nhi Ñoàng 2 Giaùo sö caùc Tröôøng Ñaïi Hoïc Y Khoa Phaùp

2. MỤC TIÊU 1. Trình bày các nguyên nhân và sinh bệnh học 2. Mô tả các triệu chứng lâm sàng và liệt kê các xét nghiệm CLS 3. Chẩn đoán và chẩn đoán phân biệt 4. Nêu được các nguyên tắc điều trị 5.Trình bày được cách theo dõi bệnh nhân suy giáp bẩm sinh 6. Nêu được các biện pháp phòng ngừa suy giáp ở trẻ em 2

3. ĐẠI CƯƠNG Suy tuyến giáp :↓ Thyroxine → ảnh hưởng lên sự tăng trưởng của trẻ và sự biệt hóa của các tế bào thần kinh ngay từ trong bào thai và tiếp tục sau sanh. Suy giáp bẩm sinh (SGBS) không được chẩn đoán và điều trị sớm: chậm phát triển tâm thần vĩnh viễn Tần suất bệnh khi được tầm soát : 1/3500 – 1/4000 trẻ sinh sống. 2002-2007: BV Từ Dũ sàng lọc 166.190 trẻ sơ sinh, tỉ lệ SGBS: 1/ 5000 trẻ sơ sinh sống. 3

5. Trục hạ đồi- tuyến yên-tuyến giáp Hạ đồi Tuyến yên Tuyến giáp

6. 6 SINH LÝ BỆNH HỌC ĐIỀU HOÀ TỔNG HỢP HORMONE TUYẾN GIÁP (+) TRH (Thyroid – Releasing Hormone) (+) TSH (Thyroid – Stimulating Hormone) T3, T4 VÙNG HẠ ĐỒI TUYẾN YÊN TUYẾN GIÁP ỨC CHẾ PHẢN HỒI –

7. SINH LÝ BỆNH HỌC Sự tổng hợp hormon giáp trạng 7

8. 8 SINH LÝ BỆNH HỌC Sự tổng hợp hormon giáp trạng  Tuyến giáp sản xuất ra :100% T4 20% T3 5% rT3 (reverse T3) : hoạt tính sinh học thấp  Trong huyết thanh : hormone tuyến giáp dạng tự do rất thấp (0,5%) còn lại gắn với protein chuyên chở : TBG (thyroxine – binding – globulin) hoặc TBPA (thyroxine binding prealbumine) và Albumin.  Nhu cầu về iode ở trẻ em khoảng 75 – 150 g / ngày.

9. 9 Vai trò của hormone giáp trạng 1. Cấu tạo tổ chức và tăng trưởng: xương, hệ thần kinh,cơ 2. Chuyển hoá:  tiêu thụ oxy và năng lượng  cholesterol  biến dưỡng cơ bản  đường huyết  sự tổng hợp protein  nhu cầu sinh tố 3. Trên hệ thần kinh giao cảm:  Tim Tiêu hóa Cơ, TK SINH LÝ BỆNH HỌC

10. NGUYÊN NHÂN 1. Bẩm sinh 2. Mắc phải 3. Trung ương 10

11. 11 NGUYÊN NHÂN 1. Bẩm sinh: nguyên phát a/ Bất thường trong sự phát triển tuyến giáp (85%) . Tuyến giáp lạc chổ: 50% . Không có tuyến giáp: 30% . Tuyến giáp kém phát triển: 5% b/ Rối loạn tổng hợp hormone tuyến giáp (15%) . Rối loạn tổng hợp Thyroglobuline . Rối loạn vận chuyển Iod . Rối loạn oxid hóa Iod (thyroperoxydase: TPO)… c/ Khác: kháng TSH do đột biến récepteur TSH, rất hiếm.

12. 12 NGUYÊN NHÂN 2. Mắc phải: Viêm tuyến giáp tự miễn (Viêm giáp Hashimoto) Sau xạ trị vùng cổ, cắt bỏ tuyến gíap vì ung thư Bướu cổ (do thiếu Iod) Thuốc làm giảm sản xuất hormone: kháng giáp Ngộ độc Iod 3. Nguồn gốc trung ương: Bất thường hạ đồi tuyên yên (dị dạng, khối u, sau phẫu thuật thần kinh….) Suy giáp trên lâm sàng mức độ vừa: T4, T3, TSH giảm

13. 13 LÂM SÀNG 2 thời kỳ: sơ sinh và nhũ nhi – trẻ lớn Thời kỳ sơ sinh:  Già tháng, chậm thải phân su, vàng da kéo dài, giảm trương lực cơ, thoát vị rốn, da nổi bông, phù niêm, bón, thóp sau chậm đóng, hạ thân nhiệt, nhịp tim chậm.  “Vẻ mặt đặc biệt”: mũi hếch, lưỡi to  Da khô, bú chậm, ngủ gà  Bướu cổ hiện diện <15%  Không điều trị sớm :chậm phát triển chiều cao, tâm thần

14. 14 LÂM SÀNG Phù niêm “Myxoedeme”

15. 15 LÂM SÀNG

16. 16 LÂM SÀNG

17. LÂM SÀNG 17

19. Thay đổi da niêm, lông tóc Da dày, khô, lạnh, xanh tái, nhám Giọng khàn Mặt đần, mí mắt phù, mũi xẹp lớn, Môi dày, lưỡi to thè Cổ to, ngắn, tụ mỡ trên xương đòn, giữa cổ và vai Đường chân tóc xuống thấp, tóc giảm khô, dễ gãy 19

20. Mặt đần, lưỡi to thè, phù mi 20

21. 21 LÂM SÀNG Trẻ lớn (rất hiếm gặp) Dạng có khoảng trống sau sinh:  Chậm phát triển chiều cao  Béo phì  BN không ngu đần nhưng có thể khó khăn trong học tập  Táo bón, ngủ nhiều và dậy thì muộn sau này. Dạng không đầy đủ triệu chứng, dễ nhầm:  Chẩn đoán rất khó, phát hiện bằng cách đo lường hormone giáp trạng.  Ở trẻ gái lớn: rối loạn kinh nguyệt  Ở trẻ trai : dậy thì sớm với phì đại tinh hoàn. Dạng thiếu máu: thiếu máu hồng cầu to Dạng biểu hiện đường tiêu hóa: bón, phình hoặc dài đại tràng.

22. 22 CẬN LÂM SÀNG  TSH /máu: tăng , T4 hoặc Free T4 (FT4) giảm  Trị số bình thường: TSH: 0,25 – 6 mU/L T4: 40-130mcg/L (51- 168nmol/L) Free T4: 0,8-2,3 ng/dL (9-29 pmol/L)  Thiếu máu  Cholesterol, Triglycerid ↑  X quang : các điểm cốt hoá ↓  Siêu âm và chụp xạ hình → nguyên nhân

24. Hội chứng Down 24

25. 25 Chaån ñoaùn nguyeân nhaân SGBS Tieàn caên gia ñình: coù SGBS, beänh lyù TG ôû meï Tieàn caên baûn thaân: laâm saøng gôïi yù TSH, T4, T3 Sieâu aâm TG Böôùu giaùp + Böôùu giaùp – Xaï hình Xaï hình Khaûo saùt söï toång hôïp hormon TG Khoâng baét xaï hình Ño löôøng Thyroglobuline Thyroglobuline=0 Khoâng coù TG (athyreùose) SGBS vónh vieån TG laïc choå (ectopie) SGBS vónh vieãn Giaûm baét xaï . Nhieãm Iod . Truyeàn KT öùc cheá r-TSH meï – con . Ñoät bieán r-TSHï….

26. CHẨN ĐOÁN Phương pháp phát hiện một cách thường quy SGBS:  Được thực hiện từ 1979  Dựa vào sự đo lường TSH: máu được lấy vào ngày thứ 3 sau sanh  Tất cả trẻ em có TSH ↑ được gọi kiểm tra lại  Điều trị sớm trước 1 tháng: phát triển tâm thần vận động bình thường sau 5 – 7 năm.  Chưa được thực hiện một cách có hệ thống tại Việt Nam. 26

27. Tầm soát sơ sinh trong thực hành Ngày 6-15 : xét nghiệm labo Ngày 3-5 : lấy máu thử Ngày 5-10 : gửi thư Ngày 0 : ngày sinh

28. Tầm soát sơ sinh trong thực hành

29. Tầm soát sơ sinh trong thực hành Time resolved immunofluorescence : AutoDelfia for TSH – T4 – IRT – 17-OHP

32. ĐIỀU TRỊ Thông thường: . Sơ sinh: 10-15 g / kg / 24giờ (liều duy nhất trong ngày) . 1-3 tháng: 8 g / kg / 24giờ . 3- 12 tháng: 5 – 6 g / kg / 24giờ . Trẻ lớn: 3 – 4 g / kg / 24giờ. Tránh dùng Thyroxine cùng lúc với đậu nành, sắt, calcium do các chất này vận chuyển T4 và ức chế sự hấp thu T4 33

33. 34 THEO DÕI VÀ TÁI KHÁM Lâm sàng: nhịp tim, phát triển thể chất Sinh học: giữ T4 cao, TSH bình thường  TSH tăng cao : điều trị chưa đủ  TSH thấp : quá liều

34. THEO DÕI VÀ TÁI KHÁM Thời gian: The American Academy of Pediatrics, 2014: Định lượng T4, free T4, TSH: . 2 tuần sau điều trị L-T4 và mỗi 2 tuần cho đến khi TSH trở về bình thường. . Mỗi 1-3 tháng trong năm đầu 2- 4 tháng trong năm thứ 1- 3 tuổi 6- 12 tháng trong các năm sau cho đến khi hết tăng trưởng . Mỗi 2 tuần sau khi thay đổi liều và thường xuyên hơn tùy kết quả và sự hợp tác uống thuốc của bệnh nhân. 35

35. TIÊN LƯỢNG Tùy thuộc lúc phát hiện bệnh và việc điều trị sớm. Nhiều nghiên cứu cho thấy sau 30 năm theo dõi: không có sự khác biệt giữa nhóm chứng (bình thường) và trẻ SG được tầm soát trong thời kỳ sơ sinh về: – sự hòa nhập xã hội, – phát triển chiều cao và dậy thì. 36

36. PHÒNG NGỪA 37 Xác định các yếu tố thuận lợi gây bướu giáp địa phương Dùng muối iode Phụ nữ có thai cần được khám tuyến giáp Không điều trị bướu giáp đơn thuần bằng dung dịch có iode cho phụ nữ mang thai Sàng lọc SGBS bằng TSH và T4 cho trẻ sơ sinh

37. Trẻ nhũ nhi, giảm trương lực cơ, bú ít, ngủ nhiều Chậm phát triển chiều cao và hoặc tăng cân Suy giáp